@inproceedings{gella-etal-2017-image,
    title = "Image Pivoting for Learning Multilingual Multimodal Representations",
    author = "Gella, Spandana  and
      Sennrich, Rico  and
      Keller, Frank  and
      Lapata, Mirella",
    editor = "Palmer, Martha  and
      Hwa, Rebecca  and
      Riedel, Sebastian",
    booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D17-1303/",
    doi = "10.18653/v1/D17-1303",
    pages = "2839--2845",
    abstract = "In this paper we propose a model to learn multimodal multilingual representations for matching images and sentences in different languages, with the aim of advancing multilingual versions of image search and image understanding. Our model learns a common representation for images and their descriptions in two different languages (which need not be parallel) by considering the image as a pivot between two languages. We introduce a new pairwise ranking loss function which can handle both symmetric and asymmetric similarity between the two modalities. We evaluate our models on image-description ranking for German and English, and on semantic textual similarity of image descriptions in English. In both cases we achieve state-of-the-art performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gella-etal-2017-image">
    <titleInfo>
        <title>Image Pivoting for Learning Multilingual Multimodal Representations</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Spandana</namePart>
        <namePart type="family">Gella</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rico</namePart>
        <namePart type="family">Sennrich</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Frank</namePart>
        <namePart type="family">Keller</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mirella</namePart>
        <namePart type="family">Lapata</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Martha</namePart>
            <namePart type="family">Palmer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rebecca</namePart>
            <namePart type="family">Hwa</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sebastian</namePart>
            <namePart type="family">Riedel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper we propose a model to learn multimodal multilingual representations for matching images and sentences in different languages, with the aim of advancing multilingual versions of image search and image understanding. Our model learns a common representation for images and their descriptions in two different languages (which need not be parallel) by considering the image as a pivot between two languages. We introduce a new pairwise ranking loss function which can handle both symmetric and asymmetric similarity between the two modalities. We evaluate our models on image-description ranking for German and English, and on semantic textual similarity of image descriptions in English. In both cases we achieve state-of-the-art performance.</abstract>
    <identifier type="citekey">gella-etal-2017-image</identifier>
    <identifier type="doi">10.18653/v1/D17-1303</identifier>
    <location>
        <url>https://aclanthology.org/D17-1303/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>2839</start>
            <end>2845</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Image Pivoting for Learning Multilingual Multimodal Representations
%A Gella, Spandana
%A Sennrich, Rico
%A Keller, Frank
%A Lapata, Mirella
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F gella-etal-2017-image
%X In this paper we propose a model to learn multimodal multilingual representations for matching images and sentences in different languages, with the aim of advancing multilingual versions of image search and image understanding. Our model learns a common representation for images and their descriptions in two different languages (which need not be parallel) by considering the image as a pivot between two languages. We introduce a new pairwise ranking loss function which can handle both symmetric and asymmetric similarity between the two modalities. We evaluate our models on image-description ranking for German and English, and on semantic textual similarity of image descriptions in English. In both cases we achieve state-of-the-art performance.
%R 10.18653/v1/D17-1303
%U https://aclanthology.org/D17-1303/
%U https://doi.org/10.18653/v1/D17-1303
%P 2839-2845
Markdown (Informal)
[Image Pivoting for Learning Multilingual Multimodal Representations](https://aclanthology.org/D17-1303/) (Gella et al., EMNLP 2017)
ACL