@inproceedings{han-etal-2017-visual,
title = "Visual Denotations for Recognizing Textual Entailment",
author = "Han, Dan and
Mart{\'\i}nez-G{\'o}mez, Pascual and
Mineshima, Koji",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1305",
doi = "10.18653/v1/D17-1305",
pages = "2853--2859",
abstract = "In the logic approach to Recognizing Textual Entailment, identifying phrase-to-phrase semantic relations is still an unsolved problem. Resources such as the Paraphrase Database offer limited coverage despite their large size whereas unsupervised distributional models of meaning often fail to recognize phrasal entailments. We propose to map phrases to their visual denotations and compare their meaning in terms of their images. We show that our approach is effective in the task of Recognizing Textual Entailment when combined with specific linguistic and logic features.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2017-visual">
<titleInfo>
<title>Visual Denotations for Recognizing Textual Entailment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pascual</namePart>
<namePart type="family">Martínez-Gómez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koji</namePart>
<namePart type="family">Mineshima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the logic approach to Recognizing Textual Entailment, identifying phrase-to-phrase semantic relations is still an unsolved problem. Resources such as the Paraphrase Database offer limited coverage despite their large size whereas unsupervised distributional models of meaning often fail to recognize phrasal entailments. We propose to map phrases to their visual denotations and compare their meaning in terms of their images. We show that our approach is effective in the task of Recognizing Textual Entailment when combined with specific linguistic and logic features.</abstract>
<identifier type="citekey">han-etal-2017-visual</identifier>
<identifier type="doi">10.18653/v1/D17-1305</identifier>
<location>
<url>https://aclanthology.org/D17-1305</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2853</start>
<end>2859</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Visual Denotations for Recognizing Textual Entailment
%A Han, Dan
%A Martínez-Gómez, Pascual
%A Mineshima, Koji
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F han-etal-2017-visual
%X In the logic approach to Recognizing Textual Entailment, identifying phrase-to-phrase semantic relations is still an unsolved problem. Resources such as the Paraphrase Database offer limited coverage despite their large size whereas unsupervised distributional models of meaning often fail to recognize phrasal entailments. We propose to map phrases to their visual denotations and compare their meaning in terms of their images. We show that our approach is effective in the task of Recognizing Textual Entailment when combined with specific linguistic and logic features.
%R 10.18653/v1/D17-1305
%U https://aclanthology.org/D17-1305
%U https://doi.org/10.18653/v1/D17-1305
%P 2853-2859
Markdown (Informal)
[Visual Denotations for Recognizing Textual Entailment](https://aclanthology.org/D17-1305) (Han et al., EMNLP 2017)
ACL
- Dan Han, Pascual Martínez-Gómez, and Koji Mineshima. 2017. Visual Denotations for Recognizing Textual Entailment. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2853–2859, Copenhagen, Denmark. Association for Computational Linguistics.