@inproceedings{andreas-klein-2017-analogs,
title = "Analogs of Linguistic Structure in Deep Representations",
author = "Andreas, Jacob and
Klein, Dan",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1311",
doi = "10.18653/v1/D17-1311",
pages = "2893--2897",
abstract = "We investigate the compositional structure of message vectors computed by a deep network trained on a communication game. By comparing truth-conditional representations of encoder-produced message vectors to human-produced referring expressions, we are able to identify aligned (vector, utterance) pairs with the same meaning. We then search for structured relationships among these aligned pairs to discover simple vector space transformations corresponding to negation, conjunction, and disjunction. Our results suggest that neural representations are capable of spontaneously developing a {``}syntax{''} with functional analogues to qualitative properties of natural language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="andreas-klein-2017-analogs">
<titleInfo>
<title>Analogs of Linguistic Structure in Deep Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Andreas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the compositional structure of message vectors computed by a deep network trained on a communication game. By comparing truth-conditional representations of encoder-produced message vectors to human-produced referring expressions, we are able to identify aligned (vector, utterance) pairs with the same meaning. We then search for structured relationships among these aligned pairs to discover simple vector space transformations corresponding to negation, conjunction, and disjunction. Our results suggest that neural representations are capable of spontaneously developing a “syntax” with functional analogues to qualitative properties of natural language.</abstract>
<identifier type="citekey">andreas-klein-2017-analogs</identifier>
<identifier type="doi">10.18653/v1/D17-1311</identifier>
<location>
<url>https://aclanthology.org/D17-1311</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2893</start>
<end>2897</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analogs of Linguistic Structure in Deep Representations
%A Andreas, Jacob
%A Klein, Dan
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F andreas-klein-2017-analogs
%X We investigate the compositional structure of message vectors computed by a deep network trained on a communication game. By comparing truth-conditional representations of encoder-produced message vectors to human-produced referring expressions, we are able to identify aligned (vector, utterance) pairs with the same meaning. We then search for structured relationships among these aligned pairs to discover simple vector space transformations corresponding to negation, conjunction, and disjunction. Our results suggest that neural representations are capable of spontaneously developing a “syntax” with functional analogues to qualitative properties of natural language.
%R 10.18653/v1/D17-1311
%U https://aclanthology.org/D17-1311
%U https://doi.org/10.18653/v1/D17-1311
%P 2893-2897
Markdown (Informal)
[Analogs of Linguistic Structure in Deep Representations](https://aclanthology.org/D17-1311) (Andreas & Klein, EMNLP 2017)
ACL