@inproceedings{menini-etal-2017-topic,
title = "Topic-Based Agreement and Disagreement in {US} Electoral Manifestos",
author = "Menini, Stefano and
Nanni, Federico and
Ponzetto, Simone Paolo and
Tonelli, Sara",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1318",
doi = "10.18653/v1/D17-1318",
pages = "2938--2944",
abstract = "We present a topic-based analysis of agreement and disagreement in political manifestos, which relies on a new method for topic detection based on key concept clustering. Our approach outperforms both standard techniques like LDA and a state-of-the-art graph-based method, and provides promising initial results for this new task in computational social science.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="menini-etal-2017-topic">
<titleInfo>
<title>Topic-Based Agreement and Disagreement in US Electoral Manifestos</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefano</namePart>
<namePart type="family">Menini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Nanni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="given">Paolo</namePart>
<namePart type="family">Ponzetto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Tonelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a topic-based analysis of agreement and disagreement in political manifestos, which relies on a new method for topic detection based on key concept clustering. Our approach outperforms both standard techniques like LDA and a state-of-the-art graph-based method, and provides promising initial results for this new task in computational social science.</abstract>
<identifier type="citekey">menini-etal-2017-topic</identifier>
<identifier type="doi">10.18653/v1/D17-1318</identifier>
<location>
<url>https://aclanthology.org/D17-1318</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2938</start>
<end>2944</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Topic-Based Agreement and Disagreement in US Electoral Manifestos
%A Menini, Stefano
%A Nanni, Federico
%A Ponzetto, Simone Paolo
%A Tonelli, Sara
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F menini-etal-2017-topic
%X We present a topic-based analysis of agreement and disagreement in political manifestos, which relies on a new method for topic detection based on key concept clustering. Our approach outperforms both standard techniques like LDA and a state-of-the-art graph-based method, and provides promising initial results for this new task in computational social science.
%R 10.18653/v1/D17-1318
%U https://aclanthology.org/D17-1318
%U https://doi.org/10.18653/v1/D17-1318
%P 2938-2944
Markdown (Informal)
[Topic-Based Agreement and Disagreement in US Electoral Manifestos](https://aclanthology.org/D17-1318) (Menini et al., EMNLP 2017)
ACL