@inproceedings{shapira-etal-2017-interactive,
title = "Interactive Abstractive Summarization for Event News Tweets",
author = "Shapira, Ori and
Ronen, Hadar and
Adler, Meni and
Amsterdamer, Yael and
Bar-Ilan, Judit and
Dagan, Ido",
editor = "Specia, Lucia and
Post, Matt and
Paul, Michael",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-2019/",
doi = "10.18653/v1/D17-2019",
pages = "109--114",
abstract = "We present a novel interactive summarization system that is based on abstractive summarization, derived from a recent consolidated knowledge representation for multiple texts. We incorporate a couple of interaction mechanisms, providing a bullet-style summary while allowing to attain the most important information first and interactively drill down to more specific details. A usability study of our implementation, for event news tweets, suggests the utility of our approach for text exploration."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shapira-etal-2017-interactive">
<titleInfo>
<title>Interactive Abstractive Summarization for Event News Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ori</namePart>
<namePart type="family">Shapira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hadar</namePart>
<namePart type="family">Ronen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meni</namePart>
<namePart type="family">Adler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yael</namePart>
<namePart type="family">Amsterdamer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judit</namePart>
<namePart type="family">Bar-Ilan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Paul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel interactive summarization system that is based on abstractive summarization, derived from a recent consolidated knowledge representation for multiple texts. We incorporate a couple of interaction mechanisms, providing a bullet-style summary while allowing to attain the most important information first and interactively drill down to more specific details. A usability study of our implementation, for event news tweets, suggests the utility of our approach for text exploration.</abstract>
<identifier type="citekey">shapira-etal-2017-interactive</identifier>
<identifier type="doi">10.18653/v1/D17-2019</identifier>
<location>
<url>https://aclanthology.org/D17-2019/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>109</start>
<end>114</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interactive Abstractive Summarization for Event News Tweets
%A Shapira, Ori
%A Ronen, Hadar
%A Adler, Meni
%A Amsterdamer, Yael
%A Bar-Ilan, Judit
%A Dagan, Ido
%Y Specia, Lucia
%Y Post, Matt
%Y Paul, Michael
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F shapira-etal-2017-interactive
%X We present a novel interactive summarization system that is based on abstractive summarization, derived from a recent consolidated knowledge representation for multiple texts. We incorporate a couple of interaction mechanisms, providing a bullet-style summary while allowing to attain the most important information first and interactively drill down to more specific details. A usability study of our implementation, for event news tweets, suggests the utility of our approach for text exploration.
%R 10.18653/v1/D17-2019
%U https://aclanthology.org/D17-2019/
%U https://doi.org/10.18653/v1/D17-2019
%P 109-114
Markdown (Informal)
[Interactive Abstractive Summarization for Event News Tweets](https://aclanthology.org/D17-2019/) (Shapira et al., EMNLP 2017)
ACL
- Ori Shapira, Hadar Ronen, Meni Adler, Yael Amsterdamer, Judit Bar-Ilan, and Ido Dagan. 2017. Interactive Abstractive Summarization for Event News Tweets. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 109–114, Copenhagen, Denmark. Association for Computational Linguistics.