@inproceedings{chi-chen-2018-cluse,
title = "{CLUSE}: Cross-Lingual Unsupervised Sense Embeddings",
author = "Chi, Ta-Chung and
Chen, Yun-Nung",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1025/",
doi = "10.18653/v1/D18-1025",
pages = "271--281",
abstract = "This paper proposes a modularized sense induction and representation learning model that jointly learns bilingual sense embeddings that align well in the vector space, where the cross-lingual signal in the English-Chinese parallel corpus is exploited to capture the collocation and distributed characteristics in the language pair. The model is evaluated on the Stanford Contextual Word Similarity (SCWS) dataset to ensure the quality of monolingual sense embeddings. In addition, we introduce Bilingual Contextual Word Similarity (BCWS), a large and high-quality dataset for evaluating cross-lingual sense embeddings, which is the first attempt of measuring whether the learned embeddings are indeed aligned well in the vector space. The proposed approach shows the superior quality of sense embeddings evaluated in both monolingual and bilingual spaces."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chi-chen-2018-cluse">
<titleInfo>
<title>CLUSE: Cross-Lingual Unsupervised Sense Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ta-Chung</namePart>
<namePart type="family">Chi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a modularized sense induction and representation learning model that jointly learns bilingual sense embeddings that align well in the vector space, where the cross-lingual signal in the English-Chinese parallel corpus is exploited to capture the collocation and distributed characteristics in the language pair. The model is evaluated on the Stanford Contextual Word Similarity (SCWS) dataset to ensure the quality of monolingual sense embeddings. In addition, we introduce Bilingual Contextual Word Similarity (BCWS), a large and high-quality dataset for evaluating cross-lingual sense embeddings, which is the first attempt of measuring whether the learned embeddings are indeed aligned well in the vector space. The proposed approach shows the superior quality of sense embeddings evaluated in both monolingual and bilingual spaces.</abstract>
<identifier type="citekey">chi-chen-2018-cluse</identifier>
<identifier type="doi">10.18653/v1/D18-1025</identifier>
<location>
<url>https://aclanthology.org/D18-1025/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>271</start>
<end>281</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CLUSE: Cross-Lingual Unsupervised Sense Embeddings
%A Chi, Ta-Chung
%A Chen, Yun-Nung
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F chi-chen-2018-cluse
%X This paper proposes a modularized sense induction and representation learning model that jointly learns bilingual sense embeddings that align well in the vector space, where the cross-lingual signal in the English-Chinese parallel corpus is exploited to capture the collocation and distributed characteristics in the language pair. The model is evaluated on the Stanford Contextual Word Similarity (SCWS) dataset to ensure the quality of monolingual sense embeddings. In addition, we introduce Bilingual Contextual Word Similarity (BCWS), a large and high-quality dataset for evaluating cross-lingual sense embeddings, which is the first attempt of measuring whether the learned embeddings are indeed aligned well in the vector space. The proposed approach shows the superior quality of sense embeddings evaluated in both monolingual and bilingual spaces.
%R 10.18653/v1/D18-1025
%U https://aclanthology.org/D18-1025/
%U https://doi.org/10.18653/v1/D18-1025
%P 271-281
Markdown (Informal)
[CLUSE: Cross-Lingual Unsupervised Sense Embeddings](https://aclanthology.org/D18-1025/) (Chi & Chen, EMNLP 2018)
ACL
- Ta-Chung Chi and Yun-Nung Chen. 2018. CLUSE: Cross-Lingual Unsupervised Sense Embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 271–281, Brussels, Belgium. Association for Computational Linguistics.