@inproceedings{sulem-etal-2018-bleu,
title = "{BLEU} is Not Suitable for the Evaluation of Text Simplification",
author = "Sulem, Elior and
Abend, Omri and
Rappoport, Ari",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1081/",
doi = "10.18653/v1/D18-1081",
pages = "738--744",
abstract = "BLEU is widely considered to be an informative metric for text-to-text generation, including Text Simplification (TS). TS includes both lexical and structural aspects. In this paper we show that BLEU is not suitable for the evaluation of sentence splitting, the major structural simplification operation. We manually compiled a sentence splitting gold standard corpus containing multiple structural paraphrases, and performed a correlation analysis with human judgments. We find low or no correlation between BLEU and the grammaticality and meaning preservation parameters where sentence splitting is involved. Moreover, BLEU often negatively correlates with simplicity, essentially penalizing simpler sentences."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sulem-etal-2018-bleu">
<titleInfo>
<title>BLEU is Not Suitable for the Evaluation of Text Simplification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elior</namePart>
<namePart type="family">Sulem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omri</namePart>
<namePart type="family">Abend</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ari</namePart>
<namePart type="family">Rappoport</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>BLEU is widely considered to be an informative metric for text-to-text generation, including Text Simplification (TS). TS includes both lexical and structural aspects. In this paper we show that BLEU is not suitable for the evaluation of sentence splitting, the major structural simplification operation. We manually compiled a sentence splitting gold standard corpus containing multiple structural paraphrases, and performed a correlation analysis with human judgments. We find low or no correlation between BLEU and the grammaticality and meaning preservation parameters where sentence splitting is involved. Moreover, BLEU often negatively correlates with simplicity, essentially penalizing simpler sentences.</abstract>
<identifier type="citekey">sulem-etal-2018-bleu</identifier>
<identifier type="doi">10.18653/v1/D18-1081</identifier>
<location>
<url>https://aclanthology.org/D18-1081/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>738</start>
<end>744</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BLEU is Not Suitable for the Evaluation of Text Simplification
%A Sulem, Elior
%A Abend, Omri
%A Rappoport, Ari
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F sulem-etal-2018-bleu
%X BLEU is widely considered to be an informative metric for text-to-text generation, including Text Simplification (TS). TS includes both lexical and structural aspects. In this paper we show that BLEU is not suitable for the evaluation of sentence splitting, the major structural simplification operation. We manually compiled a sentence splitting gold standard corpus containing multiple structural paraphrases, and performed a correlation analysis with human judgments. We find low or no correlation between BLEU and the grammaticality and meaning preservation parameters where sentence splitting is involved. Moreover, BLEU often negatively correlates with simplicity, essentially penalizing simpler sentences.
%R 10.18653/v1/D18-1081
%U https://aclanthology.org/D18-1081/
%U https://doi.org/10.18653/v1/D18-1081
%P 738-744
Markdown (Informal)
[BLEU is Not Suitable for the Evaluation of Text Simplification](https://aclanthology.org/D18-1081/) (Sulem et al., EMNLP 2018)
ACL