
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 912–917
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

912

Convolutional Neural Networks with Recurrent Neural Filters

Yi Yang
Bloomberg

New York, NY 10022
yyang464@bloomberg.net

Abstract

We introduce a class of convolutional neural
networks (CNNs) that utilize recurrent neu-
ral networks (RNNs) as convolution filters. A
convolution filter is typically implemented as a
linear affine transformation followed by a non-
linear function, which fails to account for lan-
guage compositionality. As a result, it limits
the use of high-order filters that are often war-
ranted for natural language processing tasks.
In this work, we model convolution filters with
RNNs that naturally capture compositionality
and long-term dependencies in language. We
show that simple CNN architectures equipped
with recurrent neural filters (RNFs) achieve re-
sults that are on par with the best published
ones on the Stanford Sentiment Treebank and
two answer sentence selection datasets.1

1 Introduction

Convolutional neural networks (CNNs) have been
shown to achieve state-of-the-art results on various
natural language processing (NLP) tasks, such as
sentence classification (Kim, 2014), question an-
swering (Dong et al., 2015), and machine transla-
tion (Gehring et al., 2017). In an NLP system, a
convolution operation is typically a sliding win-
dow function that applies a convolution filter to
every possible window of words in a sentence.
Hence, the key components of CNNs are a set
of convolution filters that compose low-level word
features into higher-level representations.

Convolution filters are usually realized as linear
systems, as their outputs are affine transformations
of the inputs followed by some non-linear activa-
tion functions. Prior work directly adopts a lin-
ear convolution filter to NLP problems by utiliz-
ing a concatenation of embeddings of a window
of words as the input, which leverages word order
information in a shallow additive way. As early

1The code is available at https://github.com/
bloomberg/cnn-rnf.

CNN architectures have mainly drawn inspiration
from models of the primate visual system, the ne-
cessity of coping with language compositionality
is largely overlooked in these systems. Due to the
linear nature of the convolution filters, they lack
the ability to capture complex language phenom-
ena, such as compositionality and long-term de-
pendencies.

To overcome this, we propose to employ re-
current neural networks (RNNs) as convolution
filters of CNN systems for various NLP tasks.
Our recurrent neural filters (RNFs) can naturally
deal with language compositionality with a recur-
rent function that models word relations, and they
are also able to implicitly model long-term de-
pendencies. RNFs are typically applied to word
sequences of moderate lengths, which alleviates
some well-known drawbacks of RNNs, including
their vulnerability to the gradient vanishing and
exploding problems (Pascanu et al., 2013). As in
conventional CNNs, the computation of the con-
volution operation with RNFs can be easily paral-
lelized. As a result, RNF-based CNN models can
be 3-8x faster than their RNN counterparts.

We present two RNF-based CNN architectures
for sentence classification and answer sentence
selection problems. Experimental results on the
Stanford Sentiment Treebank and the QASent and
WikiQA datasets demonstrate that RNFs signifi-
cantly improve CNN performance over linear fil-
ters by 4-5% accuracies and 3-6% MAP scores
respectively. Analysis results suggest that RNFs
perform much better than linear filters in detecting
longer key phrases, which provide stronger cues
for categorizing the sentences.

2 Approach

The aim of a convolution filter is to produce a lo-
cal feature for a window of words. We describe
a novel approach to learning filters using RNNs,
which is especially suitable for NLP problems.

https://github.com/bloomberg/cnn-rnf
https://github.com/bloomberg/cnn-rnf


913

We then present two CNN architectures equipped
with RNFs for sentence classification and sentence
matching tasks respectively.

2.1 Recurrent neural filters
We briefly review the linear convolution filter
implementation by Kim (2014), which has been
widely adopted in later works. Consider an
m-gram word sequence [xi, · · · ,xi+m−1], where
xi ∈ Rk is a k-dimensional word vector. A lin-
ear convolution filter is a function applied to the
m-gram to produce a feature ci,j :

ci,j =f(w>j xi:i+m−1 + bj),

xi:i+m−1 =xi ⊕ xi+1 ⊕ · · · ⊕ xi+m−1,
(1)

where ⊕ is the concatenation operator, bj is a bias
term, and f is a non-linear activation function.
We typically use multiple independent linear fil-
ters to yield a feature vector ci for the word se-
quence. Linear convolution filters make strong as-
sumptions about language that could harm the per-
formance of NLP systems. First, linear filters as-
sume local compositionality and ignore long-term
dependencies in language. Second, they use sep-
arate parameters for each value of the time in-
dex, which hinders parameter sharing for the same
word type (Goodfellow et al., 2016). The assump-
tions become more problematic if we increase the
window size m.

We propose to address the limitations by em-
ploying RNNs to realize convolution filters, which
we term recurrent neural filters (RNFs). RNFs
compose the words of the m-gram from left to
right using the same recurrent unit:

ht = RNN(ht−1,xt), (2)

where ht is a hidden state vector that encoded in-
formation about previously processed words, and
the function RNN is a recurrent unit such as
Long Short-Term Memory (LSTM) unit (Hochre-
iter and Schmidhuber, 1997) or Gated Recurrent
Unit (GRU) (Cho et al., 2014). We use the last
hidden state hi+m−1 as the RNF output feature
vector ci. Features learned by RNFs are interde-
pendent of each other, which permits the learning
of complementary information about the word se-
quence. The left-to-right word composing proce-
dure in RNFs preserves word order information
and implicitly models long-term dependencies in
language. RNFs can be treated as simple drop-
in replacements of linear filters and potentially
adopted in numerous CNN architectures.

2.2 CNN architectures
Sentence encoder We use a CNN architec-
ture with one convolution layer followed by
one max pooling layer to encode a sentence.
In particular, the RNFs are applied to every
possible window of m words in the sentence
{x1:m,x2:m+1, · · · ,xn−m+1:n} to generate fea-
ture maps C = [c1, c2, · · · , cn−m+1]. Then a
max-over-time pooling operation (Collobert et al.,
2011) is used to produce a fixed size sentence rep-
resentation: v = max{C}.

Sentence classification We use a CNN architec-
ture that is similar to the CNN-static model de-
scribed in Kim (2014) for sentence classification.
After obtaining the sentence representation v, a
fully connected softmax layer is used to map v to
an output probability distribution. The network is
optimized against a cross-entropy loss function.

Sentence matching We exploit a CNN architec-
ture that is nearly identical to the CNN-Cnt model
introduced by Yang et al. (2015). Let v1 and v2

be the vector representations of the two sentences.
A bilinear function is applied to v1 and v2 to pro-
duce a sentence matching score. The score is com-
bined with two word matching count features and
fed into a sigmoid layer. The output of the sig-
moid layer is used by binary cross-entropy loss to
optimize the model.

3 Experiments

We evaluate RNFs on some of the most popular
datasets for the sentence classification and sen-
tence matching tasks. After describing the experi-
mental setup, we compare RNFs against both lin-
ear filters and conventional RNN models, and re-
port our findings in § 3.2.

3.1 Experimental settings
Data We use the Stanford Sentiment Tree-
bank (Socher et al., 2013) in our sentence classifi-
cation experiments. We report accuracy results for
both binary classification and fine-grained classi-
fication settings. Two answer sentence selection
datasets, QASent (Wang et al., 2007) and Wik-
iQA (Yang et al., 2015), are adopted in our sen-
tence matching experiments. We use MAP and
MRR to evaluate the performance of answer sen-
tence selection models.

Competitive systems We consider CNN vari-
ants with linear filters and RNFs. For RNFs, we



914

adopt two implementations based on GRUs and
LSTMs respectively. We also compare against the
following RNN variants: GRU, LSTM, GRU with
max pooling, and LSTM with max pooling.2 We
use the publicly available 300-dimensional GloVe
vectors (Pennington et al., 2014) pre-trained with
840 billion tokens to initialize the word embed-
dings for all the models. The word vectors are
fixed during downstream training. Finally, we re-
port best published results for each dataset.3

Parameter tuning For all the experiments, we
tune hyperparameters on the development sets and
report results obtained with the selected hyperpa-
rameters on the test sets. After the preliminary
search, we choose the number of hidden units (fea-
ture maps) from {200, 300, 400}, and the filter
window width from {2, 3, 4, 5} for linear filters
and from {5, 6, 7, 8} for RNFs. Linear filters tend
to perform well with small window widths, while
RNFs work better with larger window widths. We
apply dropout to embedding layers, pooling lay-
ers, RNN input layers, and RNN recurrent layers.
The dropout rates are selected from {0, 0.2, 0.4},
where 0 indicates that dropout is not used for
the specific layer. Optimization is performed by
Adam (Kingma and Ba, 2015) with early stopping.
We conduct random search with a budget of 100
runs to seek the best hyperparameter configuration
for each system.

3.2 Results

The evaluation results on sentiment classification
and answer sentence selection are shown in Ta-
ble 1 and Table 2 respectively. RNFs significantly
outperform linear filters on both tasks. In fact, we
find that CNN-RNF variants significantly outper-
form CNN-linear-filter on nearly every hyperpa-
rameter configuration in our experiments. On the
Stanford Sentiment Treebank, CNN-RNF-LSTM
outperforms CNN-linear-filter by 5.4% and 3.9%
accuracies on the fine-grained and binary classi-
fication settings respectively. We observe similar
performance boosts by adopting RNFs for CNNs
on the QASent and WikiQA test sets. CNN-RNF-
GRU improves upon CNN-linear-filter by 3.7%
MRR score on QASent and CNN-RNF-LSTM
performs better than CNN-linear-filter by 6.1%

2Max pooling performed better than mean pooling in our
preliminary experiments.

3We exclude results obtained from systems using external
resources beyond word embeddings.

System Fine-grained Binary

CNN variants
CNN-linear-filter 48.0 86.1
CNN-RNF-GRU 53.0 90.0
CNN-RNF-LSTM 53.4 90.0
RNN variants
GRU 50.5 88.7
LSTM 50.3 89.3
GRU-maxpool 51.7 89.7
LSTM-maxpool 51.6 89.8

Best published results
(Lei et al., 2017) 53.2 89.9

Table 1: Accuracy results on the Stanford Sentiment
Treebank. The best results obtained from our imple-
mentations are in bold. The best published results are
underlined.

MAP score on WikiQA. In particular, CNN-RNF-
LSTM achieves 53.4% and 90.0% accuracies on
the fine-grained and binary sentiment classifica-
tion tasks respectively, which match the state-of-
the-art results on the Stanford Sentiment Tree-
bank. CNN-RNF-LSTM also obtains competitive
results on answer sentence selection datasets, de-
spite the simple model architecture compared to
state-of-the-art systems.

Conventional RNN models clearly benefit from
max pooling, especially on the task of answer sen-
tence selection. Like RNF-based CNN models,
max-pooled RNNs also consist of two essential
layers. The recurrent layer learns a set of hid-
den states corresponding to different time steps,
and the max pooling layer extracts the most salient
information from the hidden states. However, a
hidden state in RNNs encodes information about
all the previous time steps, while RNFs focus on
detecting local features from a window of words
that can be more relevant to specific tasks. As a
result, RNF-based CNN models perform consis-
tently better than max-pooled RNN models.

CNN-RNF models are much faster to train than
their corresponding RNN counterparts, despite
they have the same numbers of parameters, as
RNFs are applied to word sequences of shorter
lengths and the computation is parallelizable. The
training of CNN-RNF-LSTM models takes 10-20
mins on the Stanford Sentiment Treebank, which
is 3-8x faster than the training of LSTM models,
on an NVIDIA Tesla P100 GPU accelerator.



915

System
QASent WikiQA

MAP MRR MAP MRR

CNN variants
CNN-linear-filter 0.750 0.813 0.668 0.687
CNN-RNF-GRU 0.773 0.850 0.726 0.738
CNN-RNF-LSTM 0.780 0.841 0.729 0.747
RNN variants
GRU 0.739 0.815 0.658 0.678
LSTM 0.745 0.806 0.651 0.671
GRU-maxpool 0.744 0.814 0.712 0.724
LSTM-maxpool 0.762 0.825 0.701 0.711

Best published results
(Rao et al., 2016) 0.801 0.877 0.701 0.718
(Wang and Jiang, 2017) - - 0.743 0.755

Table 2: Evaluation results on answer sentence selection datasets. The best results obtained from our implementa-
tions are in bold. The best published results are underlined.

Figure 1: Local label consistency ratio results com-
puted on SST dev set.

4 Analysis

We now investigate why RNFs are more effective
than linear convolution filters on the binary senti-
ment classification task. We perform quantitative
analysis on the development set of the Stanford
Sentiment Treebank (SST), in which sentiment la-
bels for some phrases are also available.

Local label consistency (LLC) ratio We first
inspect whether longer phrases have a higher ten-
dency to express the same sentiment as the entire
sentence. We define the local label consistency
(LLC) ratio as the ratio of m-grams that share the
same sentiment labels as the original sentences.
The LLC ratios with respect to different phrase
lengths are shown in Figure 1. Longer phrases are

Figure 2: Key phrase hit rate results computed on SST
dev set. The RNFs are implemented with LSTMs.

more likely to convey the same sentiments as the
original sentences. Therefore, the ability to model
long phrases is crucial to convolution filters.

Key phrase hit rate We examine linear filters
and RNFs on the ability to detect a key phrase in
a sentence. Specifically, we define the key phrases
for a sentence to be the set of phrases that are la-
beled with the same sentiment as the original sen-
tence. The key phrase hit rate is then defined as the
ratio of filter-detected m-grams that fall into the
corresponding key phrase sets. The filter-detected
m-gram of a sentence is the one whose convo-
lution feature vector has the shortest Euclidean
distance to the max-pooled vector. The hit rate
results computed on SST dev set are presented
in Figure 2. As shown, RNFs consistently per-



916

form better than linear filters on identifying key
phrases across different phrase lengths, especially
on phrases of moderate lengths (4-7). The results
suggest that RNFs are superior to linear filters, as
they can better model longer phrases whose labels
are more consistent with the sentences.4

5 Related work

Linear convolution filters are dominated in CNN-
based systems for both computer vision and nat-
ural language processing tasks. One exception
is the work of Zoumpourlis et al. (2017), which
proposes a convolution filter that is a function
with quadratic forms through the Volterra kernels.
However, this non-linear convolution filter is de-
veloped in the context of a computational model
of the visual cortex, which is not suitable for NLP
problems. In contrast, RNFs are specifically de-
rived for NLP tasks, in which a different form
of non-linearity, language compositionality, often
plays a critical role.

Several works have employed neural network
architectures that contain both CNN and RNN
components to tackle NLP problems. Tan et al.
(2016) present a deep neural network for answer
sentence selection, in which a convolution layer is
applied to the output of a BiLSTM layer for ex-
tracting sentence representations. Ma and Hovy
(2016) propose to compose character representa-
tions of a word using a CNN, whose output is then
fed into a BiLSTM for sequence tagging. Kalch-
brenner and Blunsom (2013) introduce a neural
architecture that uses a sentence model based on
CNNs and a discourse model based on RNNs.
Their system achieves state-of-the-art results on
the task of dialogue act classification. Instead of
treating an RNN and a CNN as isolated compo-
nents, our work directly marries RNNs with the
convolution operation, which illustrates a new di-
rection in mixing RNNs with CNNs.

6 Conclusion and future work

We present RNFs, a new class of convolution fil-
ters based on recurrent neural networks. RNFs se-
quentially apply the same recurrent unit to words
of a phrase, which naturally capture language
compositionality and implicitly model long-term

4Phrases of very long lengths (8-10) are rarely annotated
in SST dev data, which could explain why linear filters and
RNFs achieve similar hit rates, as small data sample often
leads to high variance.

dependencies. Experiments on sentiment classifi-
cation and answer sentence selection tasks demon-
strate that RNFs give a significant boost in per-
formance compared to linear convolution filters.
RNF-based CNNs also outperform a variety of
RNN-based models, as they focus on extracting lo-
cal information that could be more relevant to par-
ticular problems. The quantitive analysis reveals
that RNFs can handle long phrases much better
than linear filters, which explains their superior-
ity over the linear counterparts. In the future, we
would like to investigate the effectiveness of RNFs
on a wider range of NLP tasks, such as natural lan-
guage inference and machine translation.

7 Acknowledgments

We thank Chunyang Xiao for helping us to run
the analysis experiments. We thank Kazi Shefaet
Rahman, Ozan Irsoy, Chen-Tse Tsai, and Lingjia
Deng for their valuable comments on earlier ver-
sions of this paper. We also thank the EMNLP
reviewers for their helpful feedback.

References
Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Proceedings of
Empirical Methods for Natural Language Process-
ing (EMNLP).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu.
2015. Question answering over freebase with multi-
column convolutional neural networks. In Proceed-
ings of the Association for Computational Linguis-
tics (ACL).

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of
the International Conference on Machine Learning
(ICML).

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. 2016. Deep learning, volume 1.
MIT press Cambridge.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8).



917

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. In Proceedings of the Workshop on Con-
tinuous Vector Space Models and their Composition-
ality.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of Em-
pirical Methods for Natural Language Processing
(EMNLP).

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi
Jaakkola. 2017. Deriving neural architectures from
sequence and graph kernels. In Proceedings of
the International Conference on Machine Learning
(ICML).

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the Association for Computational
Linguistics (ACL).

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the International Con-
ference on Machine Learning (ICML).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of Empirical Meth-
ods for Natural Language Processing (EMNLP).

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
contrastive estimation for answer selection with
deep neural networks. In Proceedings of the ACM
International on Conference on Information and
Knowledge Management (CIKM).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of Empirical Methods for Nat-
ural Language Processing (EMNLP).

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Lstm-based deep learning models for
non-factoid answer selection. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

Mengqiu Wang, Noah A Smith, and Teruko Mita-
mura. 2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In Proceedings of Em-
pirical Methods for Natural Language Processing
(EMNLP).

Shuohang Wang and Jing Jiang. 2017. A compare-
aggregate model for matching text sequences. In
Proceedings of the International Conference on
Learning Representations (ICLR).

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of Empirical Meth-
ods for Natural Language Processing (EMNLP).

Georgios Zoumpourlis, Alexandros Doumanoglou,
Nicholas Vretos, and Petros Daras. 2017. Non-
linear convolution filters for cnn-based learning.
In Proceedings of the International Conference on
Computer Vision (ICCV).


