@inproceedings{colin-gardent-2018-generating,
title = "Generating Syntactic Paraphrases",
author = "Colin, Emilie and
Gardent, Claire",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1113/",
doi = "10.18653/v1/D18-1113",
pages = "937--943",
abstract = "We study the automatic generation of syntactic paraphrases using four different models for generation: data-to-text generation, text-to-text generation, text reduction and text expansion, We derive training data for each of these tasks from the WebNLG dataset and we show (i) that conditioning generation on syntactic constraints effectively permits the generation of syntactically distinct paraphrases for the same input and (ii) that exploiting different types of input (data, text or data+text) further increases the number of distinct paraphrases that can be generated for a given input."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="colin-gardent-2018-generating">
<titleInfo>
<title>Generating Syntactic Paraphrases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emilie</namePart>
<namePart type="family">Colin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Gardent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the automatic generation of syntactic paraphrases using four different models for generation: data-to-text generation, text-to-text generation, text reduction and text expansion, We derive training data for each of these tasks from the WebNLG dataset and we show (i) that conditioning generation on syntactic constraints effectively permits the generation of syntactically distinct paraphrases for the same input and (ii) that exploiting different types of input (data, text or data+text) further increases the number of distinct paraphrases that can be generated for a given input.</abstract>
<identifier type="citekey">colin-gardent-2018-generating</identifier>
<identifier type="doi">10.18653/v1/D18-1113</identifier>
<location>
<url>https://aclanthology.org/D18-1113/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>937</start>
<end>943</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Syntactic Paraphrases
%A Colin, Emilie
%A Gardent, Claire
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F colin-gardent-2018-generating
%X We study the automatic generation of syntactic paraphrases using four different models for generation: data-to-text generation, text-to-text generation, text reduction and text expansion, We derive training data for each of these tasks from the WebNLG dataset and we show (i) that conditioning generation on syntactic constraints effectively permits the generation of syntactically distinct paraphrases for the same input and (ii) that exploiting different types of input (data, text or data+text) further increases the number of distinct paraphrases that can be generated for a given input.
%R 10.18653/v1/D18-1113
%U https://aclanthology.org/D18-1113/
%U https://doi.org/10.18653/v1/D18-1113
%P 937-943
Markdown (Informal)
[Generating Syntactic Paraphrases](https://aclanthology.org/D18-1113/) (Colin & Gardent, EMNLP 2018)
ACL
- Emilie Colin and Claire Gardent. 2018. Generating Syntactic Paraphrases. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 937–943, Brussels, Belgium. Association for Computational Linguistics.