@inproceedings{xin-etal-2018-put,
title = "Put It Back: Entity Typing with Language Model Enhancement",
author = "Xin, Ji and
Zhu, Hao and
Han, Xu and
Liu, Zhiyuan and
Sun, Maosong",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1121",
doi = "10.18653/v1/D18-1121",
pages = "993--998",
abstract = "Entity typing aims to classify semantic types of an entity mention in a specific context. Most existing models obtain training data using distant supervision, and inevitably suffer from the problem of noisy labels. To address this issue, we propose entity typing with language model enhancement. It utilizes a language model to measure the compatibility between context sentences and labels, and thereby automatically focuses more on context-dependent labels. Experiments on benchmark datasets demonstrate that our method is capable of enhancing the entity typing model with information from the language model, and significantly outperforms the state-of-the-art baseline. Code and data for this paper can be found from \url{https://github.com/thunlp/LME}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xin-etal-2018-put">
<titleInfo>
<title>Put It Back: Entity Typing with Language Model Enhancement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ji</namePart>
<namePart type="family">Xin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Entity typing aims to classify semantic types of an entity mention in a specific context. Most existing models obtain training data using distant supervision, and inevitably suffer from the problem of noisy labels. To address this issue, we propose entity typing with language model enhancement. It utilizes a language model to measure the compatibility between context sentences and labels, and thereby automatically focuses more on context-dependent labels. Experiments on benchmark datasets demonstrate that our method is capable of enhancing the entity typing model with information from the language model, and significantly outperforms the state-of-the-art baseline. Code and data for this paper can be found from https://github.com/thunlp/LME.</abstract>
<identifier type="citekey">xin-etal-2018-put</identifier>
<identifier type="doi">10.18653/v1/D18-1121</identifier>
<location>
<url>https://aclanthology.org/D18-1121</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>993</start>
<end>998</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Put It Back: Entity Typing with Language Model Enhancement
%A Xin, Ji
%A Zhu, Hao
%A Han, Xu
%A Liu, Zhiyuan
%A Sun, Maosong
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F xin-etal-2018-put
%X Entity typing aims to classify semantic types of an entity mention in a specific context. Most existing models obtain training data using distant supervision, and inevitably suffer from the problem of noisy labels. To address this issue, we propose entity typing with language model enhancement. It utilizes a language model to measure the compatibility between context sentences and labels, and thereby automatically focuses more on context-dependent labels. Experiments on benchmark datasets demonstrate that our method is capable of enhancing the entity typing model with information from the language model, and significantly outperforms the state-of-the-art baseline. Code and data for this paper can be found from https://github.com/thunlp/LME.
%R 10.18653/v1/D18-1121
%U https://aclanthology.org/D18-1121
%U https://doi.org/10.18653/v1/D18-1121
%P 993-998
Markdown (Informal)
[Put It Back: Entity Typing with Language Model Enhancement](https://aclanthology.org/D18-1121) (Xin et al., EMNLP 2018)
ACL