@inproceedings{elgohary-etal-2018-dataset,
title = "A dataset and baselines for sequential open-domain question answering",
author = "Elgohary, Ahmed and
Zhao, Chen and
Boyd-Graber, Jordan",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1134/",
doi = "10.18653/v1/D18-1134",
pages = "1077--1083",
abstract = "Previous work on question-answering systems mainly focuses on answering individual questions, assuming they are independent and devoid of context. Instead, we investigate sequential question answering, asking multiple related questions. We present QBLink, a new dataset of fully human-authored questions. We extend existing strong question answering frameworks to include previous questions to improve the overall question-answering accuracy in open-domain question answering. The dataset is publicly available at \url{http://sequential.qanta.org}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elgohary-etal-2018-dataset">
<titleInfo>
<title>A dataset and baselines for sequential open-domain question answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Elgohary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous work on question-answering systems mainly focuses on answering individual questions, assuming they are independent and devoid of context. Instead, we investigate sequential question answering, asking multiple related questions. We present QBLink, a new dataset of fully human-authored questions. We extend existing strong question answering frameworks to include previous questions to improve the overall question-answering accuracy in open-domain question answering. The dataset is publicly available at http://sequential.qanta.org.</abstract>
<identifier type="citekey">elgohary-etal-2018-dataset</identifier>
<identifier type="doi">10.18653/v1/D18-1134</identifier>
<location>
<url>https://aclanthology.org/D18-1134/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>1077</start>
<end>1083</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A dataset and baselines for sequential open-domain question answering
%A Elgohary, Ahmed
%A Zhao, Chen
%A Boyd-Graber, Jordan
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F elgohary-etal-2018-dataset
%X Previous work on question-answering systems mainly focuses on answering individual questions, assuming they are independent and devoid of context. Instead, we investigate sequential question answering, asking multiple related questions. We present QBLink, a new dataset of fully human-authored questions. We extend existing strong question answering frameworks to include previous questions to improve the overall question-answering accuracy in open-domain question answering. The dataset is publicly available at http://sequential.qanta.org.
%R 10.18653/v1/D18-1134
%U https://aclanthology.org/D18-1134/
%U https://doi.org/10.18653/v1/D18-1134
%P 1077-1083
Markdown (Informal)
[A dataset and baselines for sequential open-domain question answering](https://aclanthology.org/D18-1134/) (Elgohary et al., EMNLP 2018)
ACL