@inproceedings{verma-etal-2018-syntactical,
title = "Syntactical Analysis of the Weaknesses of Sentiment Analyzers",
author = "Verma, Rohil and
Kim, Samuel and
Walter, David",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1141",
doi = "10.18653/v1/D18-1141",
pages = "1122--1127",
abstract = "We carry out a syntactic analysis of two state-of-the-art sentiment analyzers, Google Cloud Natural Language and Stanford CoreNLP, to assess their classification accuracy on sentences with negative polarity items. We were motivated by the absence of studies investigating sentiment analyzer performance on sentences with polarity items, a common construct in human language. Our analysis focuses on two sentential structures: downward entailment and non-monotone quantifiers; and demonstrates weaknesses of Google Natural Language and CoreNLP in capturing polarity item information. We describe the particular syntactic phenomenon that these analyzers fail to understand that any ideal sentiment analyzer must. We also provide a set of 150 test sentences that any ideal sentiment analyzer must be able to understand.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="verma-etal-2018-syntactical">
<titleInfo>
<title>Syntactical Analysis of the Weaknesses of Sentiment Analyzers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rohil</namePart>
<namePart type="family">Verma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Walter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We carry out a syntactic analysis of two state-of-the-art sentiment analyzers, Google Cloud Natural Language and Stanford CoreNLP, to assess their classification accuracy on sentences with negative polarity items. We were motivated by the absence of studies investigating sentiment analyzer performance on sentences with polarity items, a common construct in human language. Our analysis focuses on two sentential structures: downward entailment and non-monotone quantifiers; and demonstrates weaknesses of Google Natural Language and CoreNLP in capturing polarity item information. We describe the particular syntactic phenomenon that these analyzers fail to understand that any ideal sentiment analyzer must. We also provide a set of 150 test sentences that any ideal sentiment analyzer must be able to understand.</abstract>
<identifier type="citekey">verma-etal-2018-syntactical</identifier>
<identifier type="doi">10.18653/v1/D18-1141</identifier>
<location>
<url>https://aclanthology.org/D18-1141</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>1122</start>
<end>1127</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Syntactical Analysis of the Weaknesses of Sentiment Analyzers
%A Verma, Rohil
%A Kim, Samuel
%A Walter, David
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F verma-etal-2018-syntactical
%X We carry out a syntactic analysis of two state-of-the-art sentiment analyzers, Google Cloud Natural Language and Stanford CoreNLP, to assess their classification accuracy on sentences with negative polarity items. We were motivated by the absence of studies investigating sentiment analyzer performance on sentences with polarity items, a common construct in human language. Our analysis focuses on two sentential structures: downward entailment and non-monotone quantifiers; and demonstrates weaknesses of Google Natural Language and CoreNLP in capturing polarity item information. We describe the particular syntactic phenomenon that these analyzers fail to understand that any ideal sentiment analyzer must. We also provide a set of 150 test sentences that any ideal sentiment analyzer must be able to understand.
%R 10.18653/v1/D18-1141
%U https://aclanthology.org/D18-1141
%U https://doi.org/10.18653/v1/D18-1141
%P 1122-1127
Markdown (Informal)
[Syntactical Analysis of the Weaknesses of Sentiment Analyzers](https://aclanthology.org/D18-1141) (Verma et al., EMNLP 2018)
ACL