@inproceedings{yokoi-etal-2018-pointwise,
title = "Pointwise {HSIC}: A Linear-Time Kernelized Co-occurrence Norm for Sparse Linguistic Expressions",
author = "Yokoi, Sho and
Kobayashi, Sosuke and
Fukumizu, Kenji and
Suzuki, Jun and
Inui, Kentaro",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1203",
doi = "10.18653/v1/D18-1203",
pages = "1763--1775",
abstract = "In this paper, we propose a new kernel-based co-occurrence measure that can be applied to sparse linguistic expressions (e.g., sentences) with a very short learning time, as an alternative to pointwise mutual information (PMI). As well as deriving PMI from mutual information, we derive this new measure from the Hilbert{--}Schmidt independence criterion (HSIC); thus, we call the new measure the pointwise HSIC (PHSIC). PHSIC can be interpreted as a smoothed variant of PMI that allows various similarity metrics (e.g., sentence embeddings) to be plugged in as kernels. Moreover, PHSIC can be estimated by simple and fast (linear in the size of the data) matrix calculations regardless of whether we use linear or nonlinear kernels. Empirically, in a dialogue response selection task, PHSIC is learned thousands of times faster than an RNN-based PMI while outperforming PMI in accuracy. In addition, we also demonstrate that PHSIC is beneficial as a criterion of a data selection task for machine translation owing to its ability to give high (low) scores to a consistent (inconsistent) pair with other pairs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yokoi-etal-2018-pointwise">
<titleInfo>
<title>Pointwise HSIC: A Linear-Time Kernelized Co-occurrence Norm for Sparse Linguistic Expressions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sho</namePart>
<namePart type="family">Yokoi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sosuke</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenji</namePart>
<namePart type="family">Fukumizu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a new kernel-based co-occurrence measure that can be applied to sparse linguistic expressions (e.g., sentences) with a very short learning time, as an alternative to pointwise mutual information (PMI). As well as deriving PMI from mutual information, we derive this new measure from the Hilbert–Schmidt independence criterion (HSIC); thus, we call the new measure the pointwise HSIC (PHSIC). PHSIC can be interpreted as a smoothed variant of PMI that allows various similarity metrics (e.g., sentence embeddings) to be plugged in as kernels. Moreover, PHSIC can be estimated by simple and fast (linear in the size of the data) matrix calculations regardless of whether we use linear or nonlinear kernels. Empirically, in a dialogue response selection task, PHSIC is learned thousands of times faster than an RNN-based PMI while outperforming PMI in accuracy. In addition, we also demonstrate that PHSIC is beneficial as a criterion of a data selection task for machine translation owing to its ability to give high (low) scores to a consistent (inconsistent) pair with other pairs.</abstract>
<identifier type="citekey">yokoi-etal-2018-pointwise</identifier>
<identifier type="doi">10.18653/v1/D18-1203</identifier>
<location>
<url>https://aclanthology.org/D18-1203</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>1763</start>
<end>1775</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pointwise HSIC: A Linear-Time Kernelized Co-occurrence Norm for Sparse Linguistic Expressions
%A Yokoi, Sho
%A Kobayashi, Sosuke
%A Fukumizu, Kenji
%A Suzuki, Jun
%A Inui, Kentaro
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F yokoi-etal-2018-pointwise
%X In this paper, we propose a new kernel-based co-occurrence measure that can be applied to sparse linguistic expressions (e.g., sentences) with a very short learning time, as an alternative to pointwise mutual information (PMI). As well as deriving PMI from mutual information, we derive this new measure from the Hilbert–Schmidt independence criterion (HSIC); thus, we call the new measure the pointwise HSIC (PHSIC). PHSIC can be interpreted as a smoothed variant of PMI that allows various similarity metrics (e.g., sentence embeddings) to be plugged in as kernels. Moreover, PHSIC can be estimated by simple and fast (linear in the size of the data) matrix calculations regardless of whether we use linear or nonlinear kernels. Empirically, in a dialogue response selection task, PHSIC is learned thousands of times faster than an RNN-based PMI while outperforming PMI in accuracy. In addition, we also demonstrate that PHSIC is beneficial as a criterion of a data selection task for machine translation owing to its ability to give high (low) scores to a consistent (inconsistent) pair with other pairs.
%R 10.18653/v1/D18-1203
%U https://aclanthology.org/D18-1203
%U https://doi.org/10.18653/v1/D18-1203
%P 1763-1775
Markdown (Informal)
[Pointwise HSIC: A Linear-Time Kernelized Co-occurrence Norm for Sparse Linguistic Expressions](https://aclanthology.org/D18-1203) (Yokoi et al., EMNLP 2018)
ACL