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Abstract
The existing studies in cross-language infor-
mation retrieval (CLIR) mostly rely on general
text representation models (e.g., vector space
model or latent semantic analysis). These
models are not optimized for the target re-
trieval task. In this paper, we follow the suc-
cess of neural representation in natural lan-
guage processing (NLP) and develop a novel
text representation model based on adversarial
learning, which seeks a task-specific embed-
ding space for CLIR. Adversarial learning is
implemented as an interplay between the gen-
erator process and the discriminator process.
In order to adapt adversarial learning to CLIR,
we design three constraints to direct repre-
sentation learning, which are (1) a matching
constraint capturing essential characteristics of
cross-language ranking, (2) a translation con-
straint bridging language gaps, and (3) an ad-
versarial constraint forcing both language and
source invariant to be reached more efficiently
and effectively. Through the joint exploita-
tion of these constraints in an adversarial man-
ner, the underlying cross-language semantics
relevant to retrieval tasks are better preserved
in the embedding space. Standard CLIR ex-
periments show that our model significantly
outperforms state-of-the-art continuous space
models and approaches the strong machine
translation and monolingual baselines.

1 Introduction

Text representation is a crucial problem in most
natural language processing (NLP) and informa-
tion retrieval (IR) tasks. In monolingual IR, early
research works mostly use vector space models for
query-document semantic matching (Salton et al.,
1975), which suffer from the problem of syn-
onymy and polysemy. In order to bridge the lexical
gaps, latent semantic models such as latent seman-
tic analysis (LSA) (Deerwester et al., 1990) have
been proposed to abstract away from surface text

forms to approximate semantics. More recently,
text representation learned with neural networks
is attracting increasing attention of the IR commu-
nity (Mitra and Craswell, 2017) and positive re-
sults have been reported on various evaluation data
sets (Fan et al., 2018).

Compared to the prosperity in monolingual IR,
there have been less advancements in CLIR where
documents are written in a language different from
that of queries. In addition to document ranking,
CLIR models need to cross the language barri-
ers, which makes the task intuitively more difficult
than monolingual IR. Traditional approaches re-
duce CLIR to its monolingual counterpart via per-
forming some way of translation on queries or/and
documents. The typical translation process is per-
formed with either off-the-shelf machine trans-
lation (MT) systems or multilingual dictionaries
(Nie, 2010). However, MT based approaches are
far from being a suitable solution for solving CLIR
problems (refer to detailed analysis in (Zhou et al.,
2012)). Dictionary-based approaches suffer from
the same problem of lexical gaps as in the mono-
lingual case (Gupta et al., 2017). An efficient
cross-language representation is in need for CLIR,
which is expected to be able to cross both the lan-
guage and lexical gaps.

The most intuitive idea one can have so as to
represent text in cross-language settings is to ex-
tend those models in monolingual environment.
For instance, we note studies such as the exten-
sion of LSA in (Littman et al., 1998), the ex-
tension of principle component analysis (PCA) in
(Platt et al., 2010), the extension of autoencoder
model in (Chandar et al., 2014), and the extension
of word2vec (Mikolov et al., 2013) in (Vulić and
Moens, 2015). These approaches construct cross-
language and semantic-rich representation of text,
which can be applied to CLIR directly. However,
all the models listed here aim to learn general text
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representation where the objective is to capture
term proximity rather than relevance that is essen-
tial for retrieval task (Zamani and Croft, 2017). A
recent work (Gupta et al., 2017) tries to learn task-
specific representation for CLIR. However, their
model only captures ranking signals in monolin-
gual settings, which does not necessarily general-
ize well in CLIR.

In this paper, we propose to learn task-specific
text representation for CLIR via a novel adversar-
ial learning framework. Following the convention
in generative adversarial networks (GAN) (Good-
fellow et al., 2014), our representation learning
model is realized as an interplay between two pro-
cesses, an embedding generator (G) and an ad-
versarial discriminator (D), conducted as a min-
max game. With the GAN framework, we de-
sign three constraints to direct the representation
learning process. CLIR is essentially a rank-
ing problem and we develop a matching con-
straint to make sure that documents can be ranked
in the right order given a query in another lan-
guage. The matching constraint considers both
cross-language and monolingual pairwise rank-
ing signals, which is superior to previous studies
(e.g., (Gupta et al., 2017)) only considering mono-
lingual matching signals. Meanwhile, a transla-
tion constraint is imposed on the latent representa-
tion to bridge the language gaps. These two con-
straints direct the encoding networks to generate
a language-invariant and task-specific representa-
tion in the embedding space. Lastly, an adversarial
constraint is proposed to force both language and
source invariant to be reached more efficiently and
effectively. Through the joint exploitation of these
constraints in an adversarial manner, the embed-
ding space being optimal for CLIR will then result
through the convergence of this process. Compre-
hensive CLIR experiments reveal that our model is
superior to state-of-the-art continuous space mod-
els and approaches the machine translation and
monolingual baselines.

2 Related work

Text representation has been a long-standing re-
search question in IR. Classic methods such as
vector space model are not able to deal with lexi-
cal gaps between queries and documents, resulting
in inferior retrieval performance. Latent semantic
approaches such as LSA (Deerwester et al., 1990)
and latent dirichlet allocation (LDA) (Blei et al.,

2003) abstract away from surface text forms to al-
leviate sparsity and approximate semantics. More
recently, learning based approaches with neural
networks have gained great success in NLP (Ba-
roni et al., 2014) and started to attract increasing
interests of the IR community. In terms of word
level embedding, word2vec (Mikolov et al., 2013)
and Glove (Pennington et al., 2014) are two mod-
els that have been cited frequently in recent litera-
ture. These two models provide semantic-rich rep-
resentations to bridge lexical gaps between queries
and documents, which have been used broadly in
neural IR studies (Ganguly et al., 2015; Zheng and
Callan, 2015; Zamani and Croft, 2016).

The above studies deal with monolingual text
representation, which are related to the cross-
language models presented below. As for CLIR,
typical approaches reduce CLIR to its monolin-
gual counterparts via performing some way of
translation. Machine translation systems such as
Google translator1 have been widely used to trans-
late queries or documents, which serve as a de-
fault and convenient translation option in CLIR.
It is however far from being a suitable solution
for solving CLIR problems (a detailed analysis
can be found in (Zhou et al., 2012)). An alter-
native solution is to rely on multilingual dictio-
naries to perform lexicon-level translation, which
is mostly in combination with either language
modeling strategy (Kraaij et al., 2003) or query
structuring framework (Pirkola, 1998). However,
dictionary-based methods still suffer from the lex-
ical gap problem which reduces their performance
in CLIR.

In fact, researchers have extended the models
in monolingual settings and developed continu-
ous space models for cross-language tasks to cap-
ture rich semantics. These cross-language exten-
sions can be applied to CLIR directly. For in-
stance, Littman et al. (1998) extend LSA to its
cross-language version CL-LSA by concatenating
document-term matrix of parallel data which acts
as dual-language documents to be learned by LSA.
Such a methodology leads to a dual-language se-
mantic space in which terms from both languages
are represented. Vinokourov et al. (2002) use
parallel data to find most likely correlations be-
tween projected vectors based on canonical com-
ponent analysis technique. The OPCA model
(Platt et al., 2010) starts with the basic model

1https://translate.google.com
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PCA that is then made discriminative by encour-
aging comparable document pairs to have simi-
lar vector representation. Compared to CL-LSA,
OPCA avoids the use of artificial concatenated
documents. More recently, neural models have
been employed to learn cross-language represen-
tations. For instance, autoencoder is extended to
a bilingual version BAE in (Chandar et al., 2014)
which learns vectorial word representations from
aligned sentences. Yih et al. (2011) develop S2Net
to learn a projection matrix to map the correspond-
ing term vectors into a latent space where simi-
lar documents are close. S2Net is implemented
with Siamese neural network framework. Vulić
and Moens (2015) first merge two documents from
the aligned document pair in a comparable corpus
and then train word2vec on the pseudo-bilingual
document to obtain cross-language embeddings.
The above approaches learn general text represen-
tation that captures term proximity rather than rel-
evance which is important for retrieval task (Za-
mani and Croft, 2017). A recent work (Gupta
et al., 2017) tries to learn task-specific embeddings
for CLIR. However, it learns ranking signals by
preserving pairwise ranking in monolingual set-
tings prior to a transfer learning process to another
language, which does not necessarily generalize
well in CLIR.

One can find from above analysis that, most
existing approaches, either based on neural net-
works or not, learn general embeddings irrelevant
to CLIR. We argue that task-specific embeddings
are superior, a fact that is inspired by monolin-
gual IR studies and that will actually be validated
by CLIR experiments in this paper. To this end,
we will learn cross-language and task-specific em-
beddings for CLIR via a novel text representation
model based on adversarial learning (Goodfellow
et al., 2014).

3 Representation learning framework

We will present in this section a neural represen-
tation learning framework for CLIR. As discussed
before, the framework is realized based on adver-
sarial learning as an interplay between the genera-
tor process and the discriminator process. We will
develop three constraints, namely a matching con-
straint, a translation constraint and an adversarial
constraint, to direct the learning of cross-language
and target-specific text embeddings. For ease of
presentation, let us assume in CLIR we have a
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Figure 1: Text representation learning model for CLIR
with adversarial framework.

source language query qs and a target language
document dt. The translation of qs in the target
language is qt. The learning framework is illus-
trated in figure 1, which consists of an adversar-
ial network NNadv, three dimension adaptation
networks NNdim and three encoding networks re-
spectively for qt, dt and qs.

3.1 Text representation networks

There have been various approaches one can use
to encode sentences/documents into dense vectors.
For instance, models based on convolutional neu-
ral networks (Kalchbrenner et al., 2014) and mod-
els based on recurrent neural networks (Liu et al.,
2016) have been popular choices.

In order to map queries and documents into
the embedding space, we make use of recurrent
neural network with the long short-term memory
(LSTM) architecture that can deal with vanishing
and exploring gradient problems (Hochreiter and
Schmidhuber, 1997). We present here derivation
details of LSTM for clarification sake. The LSTM
framework consists of several gates to control the
cell state in the network. Firstly, a forget gate f (a
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sigmoid layer) functions according to:

f τ = σ(Wf · [hτ−1, xτ ] + bf )

Then, an input gate i (a sigmoid layer) and a tanh
layer work together as follows:

iτ = σ(Wi · [hτ−1, xτ ] + bi)

C̃τ = tanh(Wc · [hτ−1, xτ ] + bc)

With the forget gate f , the input gate i and the new
value C̃, one can update the cell state C as:

Cτ = f τ ∗ Cτ−1 + iτ ∗ C̃τ

Lastly, an output gate o (a sigmoid layer) outputs:

oτ = σ(Wo · [hτ−1, xτ ] + bo)

hτ = oτ ∗ tanh(Cτ )

In above equations, xτ is the input at time step τ .
hτ and hτ−1 denote the hidden states at time steps
τ and τ − 1. All W and b are parameters. For
brevity, we can write the update process as:

hτ = LSTM(hτ−1, xτ )

Given a text sequence x = (x1, x2, . . . , xl),
typical methods take the output hl of LSTM at
the last time step l as the concentrated represen-
tation of the whole sequence x (Sutskever et al.,
2014). Since queries in IR tasks tend to be short
and noisy, we make use of Bidirectional LSTM
with pooling (Tan et al., 2015) to obtain a more
effective text representation from all the hidden
states h1:l. The sequence x is fed from left to right
into LSTMa and from right to left into LSTMb.
The new hidden state hτab at time step τ is obtained
by concatenating the hidden states of LSTMa and
LSTMb at their respective time step τ . Since
max-pooling has been proven to be efficient in
similar tasks (Tan et al., 2015), the latent repre-
sentation zx of x can be formulated as:

zx = NNdim(MaxPooling(h1:lab ))

where x can be qs, qt or dt. NNdim is designed
to adapt the output dimension and to allow further
flexibility for representation learning.

3.2 Matching constraint and Translation
constraint

Document ranking is the central problem in both
monolingual IR and CLIR tasks. CLIR differs it-
self from its monolingual counterpart in that the

language gap needs to be crossed prior to the re-
trieval process. Since the choice of translation
strategies (query, document or both) affects the de-
sign of other components in our model, we will
discuss the translation constraint in section 3.2.1
prior to matching constraints in sections 3.2.2 and
3.2.3.

3.2.1 Translation constraint
The translation constraint is developed to mini-
mize the differences between a pair of parallel
texts, which serves as a basic requirement in the
translation scenario. Such a constraint directs the
learning of language-invariant text representation
for CLIR. We follow the arguments in previous
studies (Vilares et al., 2016) and choose to trans-
late queries in our model, since it is computation-
ally expensive to translate large-scale document
collections in practice. In this paper, we directly
employ Google translator to translate queries,
which is a popular choice for machine transla-
tion that leads to state-of-the-art translation per-
formance. The translation constraint is then im-
posed on the embedding vectors zqs and zqt of the
queries qs and qt. The translation lossLtra on a set
QP of query pairs can be defined with the squared
L2 norm, which is:

Ltra =
∑

(qs,qt)∈QP

‖zqs − zqt‖22

3.2.2 Cross-language matching constraint
The matching constraint captures essential charac-
teristics of cross-language ranking. Following the
practice in learning to rank (Liu, 2009), we model
document ranking in the pairwise style where the
relevance information is in the form of preferences
between pairs of documents with respect to in-
dividual queries. In the model for CLIR, since
we have matching signals from both monolingual
text pairs and cross-language text pairs, the model
can benefit from complementary knowledge from
two resources. The monolingual pairwise match-
ing constraint will be introduced in section 3.2.3.

Similar to neural models in monolingual set-
tings (Huang et al., 2013), the cross-language pair-
wise matching constraint is placed on top of the
embedding vectors of source language query and
target language documents. In figure 1, let us as-
sume xqs has a relevant document xdt+ and an
irrelevant document xdt− according to annotated
text pairs. In training, the positive sample xdt+
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for xqs can be chosen as the most relevant texts
according to annotation, and the negative sample
xdt− is picked randomly from the data collection.
The cross-language matching constraint encour-
ages the hidden representation of xdt+ to be near
to the hidden representation of xqs in the semantic-
rich embedding space. Meanwhile, it asks the hid-
den representation of xdt− to be far from that of
xqs . We follow typical neural IR models and make
use of cosine as the distance measure of hidden
vectors. The probability that dt+ is ranked higher
than dt− given qs can be derived as:

P̂ (qs) = σ[βc · (cos(zqs , zdt+)− cos(zqs , zdt−))]

where σ is the sigmoid function with a hyper-
parameter βc controlling its shape. The cross-
language matching loss Lmatc on cross-language
triplet set QDc can be defined with cross-entropy
loss as:

Lmatc =
∑

(qs,dt+,dt−)∈QDc

CE[P (qs), P̂ (qs)]

where CE denotes the cross-entropy operator be-
tween two distributions and P (qs) is the actual
counterpart of P̂ (qs) estimated from annotation
with a strategy similar to that in (Dehghani et al.,
2017).

3.2.3 Monolingual matching constraint
The monolingual matching constraint Lmatm can
be built in a way similar to that of Lmatc. Lmatm
is imposed on a set QDm of monolingual triplet
(qt, dt+, dt−) as:

Lmatm =
∑

(qt,dt+,dt−)∈QDm

CE[P (qt), P̃ (qt)]

where P (qt) is the actual counterpart of P̃ (qt) es-
timated from annotation. P̃ (qt) denotes the prob-
ability that dt+ is ranked higher than dt− given qt.
It can be computed with the sigmoid function as:

P̃ (qt) = σ[βm · (cos(zqt , zdt+)− cos(zqt , zdt−))]

where βm is a hyper-parameter.

3.2.4 Embedding generator constraint
Since our model is implemented with adversar-
ial framework, we propose to model the repre-
sentation generator G, which embodies the pro-
cess of language-invariant and task-specific em-
bedding of queries and documents into a latent

subspace, under a combination of three constraints
introduced above. The translation constraint aims
to guarantee language invariant when translating
queries. The cross-language matching constraint
explicitly captures cross-language ranking signals
from cross-language text pairs. The monolin-
gual matching constraint takes monolingual rank-
ing into account so as to complement the cross-
language ranking signals.

Combing the three constraints above, we obtain
a comprehensive constraint that should be obeyed
by the embedding generator process. With the
regularization term Lreg equaling to the sum of
Frobenius norms of all weight matrices in the text
embedding phase, we can write the embedding
generator constraint LG as:

LG(θG) = γ1 ·Ltra+γ2 ·Lmatc+γ3 ·Lmatm+Lreg

where θG denotes the set of parameters in the
generator networks, and γ1, γ2, γ3 are hyper-
parameters.

3.3 Adversarial constraint
We will introduce the adversarial constraint in this
part. GAN (Goodfellow et al., 2014) simultane-
ously trains a generative model G and a disrim-
inative model D in a competing way. G gener-
ates samples from a source of noisew that satisfies
w ∼ Pn(w) and tries to capture the real data dis-
tribution Pr. D learns to distinguish between the
generated samples from G and the true data sam-
pled from Pr (in practice, from training data). The
training procedure for G is to try its best to fool
D. Let us assume that G generates samples satis-
fying the distribution Pg that is implicitly decided
by G(w). The GAN value function V (G,D) on
which D and G play the minmax game can be writ-
ten as:

min
G

max
D

V (D,G) =Ex∼Pr [logD(x)] (1)

+ Ex∼Pg [log(1−D(x))]

Theoretical analysis has indicated that playing the
minmax game as above amounts to minimizing the
Jensen-Shannon divergence between Pg and Pr.

We follow the general idea of GAN and de-
velop an adversarial component on top of the em-
bedding space in figure 1. We note that GAN
has been used in representation learning in a sim-
ilar way as in (Bousmalis et al., 2016; Liu et al.,
2017). In our model in figure 1, the adversar-
ial component NNadv acts as the discriminator D
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which tries its best to detect whether the embed-
ding vector z is encoded from xqt , xdt or xqs . In
this paper, NNadv is implemented as a neural net-
work with a softmax output layer. The output of
NNadv then corresponds to a probability distri-
bution vector over the input sources. Let us de-
note the ground truth label of the current input z
to NNadv as lz which indicates the source that z
is encoded from. We can adjust equation 1 to our
settings and obtain the adversarial loss Ladv on a
query set Qt and a document set Dt in the target
language, as well as a query set Qs in the source
language, which can be written as:

Ladv = min
G

max
D

∑
x∈Qt,Dt,Qs

logNNadv(zx) ◦ lzx

where ◦ is the inner product operator.

3.4 Training procedure

Following the training convention of GAN (Good-
fellow et al., 2014), the process of learning the
language-invariant and task-specific text represen-
tation for CLIR should be conducted by jointly
minimizing the generator constraint LG and the
adversarial loss Ladv, which leads us to the com-
bined objective function L as:

L = LG + Ladv

According to the rule of playing the minmax
game in GAN, G tries its best to maximize the
probability that D makes a mistake and D tries
its best to distinguish between real data and gen-
erated data (in our case, various input sources).
The theoretical requirement behind GAN that D is
maintained near its optimal solution as long as G
changes slowly enough motivates us to update the
discriminator part k steps per update of the gen-
erator part in the iterative optimization process.
Based on these discussions, the minmax optimiza-
tion process can be derived as:

1. Optimize D when fixing G through:
θ̂D = argmaxθD L(θ̂G, θD)

2. Optimize G when fixing D through:
θ̂G = argminθG L(θG, θ̂D)

The optimization can be implemented with
mini-batch gradient ascent (for θD) and descent
(for θG).

4 Experiments and results

In this section, we conduct CLIR experiments so
as to compare our text representation model with
several other models.

4.1 Data sets

4.1.1 CLIR evaluation sets
To perform CLIR experiments, we rely on broadly
used data sets released in the bilingual tasks of
the cross-language evaluation forum (CLEF) 2. We
choose to use the data from the year 2000 to 2004.
Table 1 lists the characteristics of the data set,
which include number of documents (Nd), num-
ber of distinct words (Nw), the average document
length (DLavg) and the number of queries (Nq)
in each task. We use source language queries in
French (Fr), German (De) and Italian (It) to re-
trieve target language documents in English (En).
Queries from year 2000 to 2002 are combined to
a single task in table 1 since they have the same
target set.

Table 1: CLIR dataset statistics (k = thousand).
Dataset Nd Nw DLavg Nq

CLEF00-02 113k 173k 311 140
CLEF03 169k 233k 284 60
CLEF04 56k 120k 231 50

4.1.2 Training set
In order to train the representation learning model,
we need to construct a data set consisting of anno-
tated text pairs. We combine AOL queries (Pass
et al., 2006) and a set of news titles downloaded
from the news sites3 to constitute training query
set of diversity. Following the previous work
(Gupta et al., 2017), we sample a balanced subset
(1M) from such query set and use these queries to
retrieve the data collection with BM25. For each
training query, we take the top retrieved texts as
positive samples, and the negative samples are se-
lected randomly from the data collection. In addi-
tion to the pseudo-labeled text pairs of low quality,
we combine the LETOR4.0 dataset (Qin and Liu,
2013) that is developed for evaluating learning to
rank models. The LETOR4.0 dataset consists of
relevance judgments of higher quality compared to

2http://www.clef-initiative.eu
3We fetch 2.8M web pages from several news web-

sites such as ChinaDaily (www.chinadaily.com.cn) and Xin-
huaNews (www.xinhuanet.com).
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pseudo-labeled data. The two data resources can
complement each other in the training process.

In our experiments, the pseudo-labeled data is
used to train the whole model and the LETOR
dataset is employed to fine tune the parameters rel-
evant to the source queries and target documents
which are more important for the cross-language
retrieval task.

4.2 Experimental settings

4.2.1 Experimental setup
The terms are initialized as the 512d word2vec
vectors trained on Wikipedia dump corpus4. The
term embeddings are fed into the LSTM model
of which the hidden unit number is chosen from
{64, 128, 256, 512}. The adversarial network
NNadv is as a three-layer feed-forward network
with softmax on top of the last layer. NNdim

is implemented as a feed-forward network with
layer dimension chosen from {32, 64, 128, 256}
and hidden layer number chosen from {1, 2}. The
values of hyper-parameters γ1, γ2 and γ3 are cho-
sen from {0.01, 0.1, 1, 10, 100}. The learning rate
is selected from {10−1, 10−2, 10−3, 10−4, 10−5}.
Those hyper-parameters are tuned on the valida-
tion set which is 20% of the training queries ran-
domly selected.

For evaluation, we present results in terms of
mean average precision (MAP). Statistically sig-
nificant differences between various models are
determined using the paired t-test with p < 0.05.

4.2.2 Baseline approaches
We make use of three categories of baselines for
CLIR experiments.

1. Monolingual run (MON): a baseline with tar-
get language queries that are strictly parallel
to source language queries.

2. Machine translation (MT): a baseline
with target-language queries translated by
machine translation system from source-
language queries.

3. Cross-language text representation models:
baselines that rely on continuous space mod-
els for cross-language text representation.
We make use here of S2Net (Yih et al., 2011),
BAE (Chandar et al., 2014), and XCNN
(Gupta et al., 2017) for the CLIR task.

4https://dumps.wikimedia.org

4.3 Results and analysis

4.3.1 Comparisons to state-of-the-art
Table 2 lists the experimental results on CLEF
dataset for our model (the column OURS) and
all baseline models. There are three data collec-
tions and three language pairs, amounting to nine
cross-language retrieval tasks. Except the strong
baselines MON and MT, our model shows the
best overall performance among all CLIR strate-
gies. Indeed, our model outperforms all continu-
ous space baselines (i.e., S2Net, BAE and XCNN)
with statistical significance in almost all cases.
Our model decreases slightly from the strong MT
baseline in most retrieval tasks with only one
degradation being significant on 03(De-En). Fur-
thermore, one can find that our model approaches
the monolingual baseline very much in all re-
trieval tasks with all MAP ratios around or over
90%. In our experiments, we have not performed
comparisons to CL-LSA (Littman et al., 1998)
and its variant OPCA (Platt et al., 2010), because
they have been consistently outperformed by other
CLIR strategies with a large margin (Schauble and
Sheridan, 1997; Nie, 2010; Vulić et al., 2011).

Among all continuous space baselines, the
most recent model XCNN shows the best perfor-
mance. XCNN always outperforms linear projec-
tion methods S2Net with significance. It also sig-
nificantly outperforms the non-linear model BAE
in all cases. This is coincident with previous
conclusions in (Gupta et al., 2017) due to the
fact that XCNN learns target-specific representa-
tion for CLIR but the other models do not. Our
model also tries to learn task-specific represen-
tation for CLIR, which significantly outperforms
XCNN in most cases according to the results in
table 2. The reasons might be that (1) our method
is modeled in a more effective adversarial learn-
ing framework. (2) we explicitly capture cross-
language ranking signals in embedding genera-
tor in addition to monolingual ranking signals
used in XCNN. (3) our model can jointly capture
the translation knowledge and document ranking
knowledge in a unified framework.

4.3.2 Variant of our model
Our model can be customized easily by altering
the constraints to direct the representation learn-
ing process. Since the specificity of our model
comes from the adversarial learning framework
that has never been investigated in CLIR, we re-
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Table 2: Retrieval performance (MAP scores) of all models on CLEF collections. +(m/x) or −(m/x) indicates
that the improvements or degradations with respect to MT/XCNN are statistically significant. The highest value in
each row (except the MON and MT baselines) is marked in bold. The percentages in the last column denote the
MAP ratio of our model with respect to the MON baseline.

Data Lang MON MT S2Net BAE XCNN OURS PROP

00-02
Fr-En 0.469 0.431 0.330−m−x 0.369−m−x 0.401−m 0.424+x 90.4%
De-En 0.469 0.447 0.341−m−x 0.381−m−x 0.420−m 0.435+x 92.8%
It-En 0.469 0.439 0.339−m−x 0.374−m−x 0.409−m 0.426+x 90.8%

03
Fr-En 0.498 0.471 0.352−m−x 0.383−m−x 0.431−m 0.456+x 91.6%
De-En 0.498 0.462 0.358−m−x 0.390−m−x 0.430−m 0.439−m 88.2%
It-En 0.498 0.468 0.367−m−x 0.395−m−x 0.439−m 0.467+x 93.8%

04
Fr-En 0.517 0.483 0.378−m−x 0.402−m−x 0.442−m 0.470+x 90.9%
De-En 0.517 0.482 0.382−m−x 0.419−m−x 0.447−m 0.473+x 91.5%
It-En 0.517 0.477 0.385−m−x 0.411−m−x 0.458 0.481+x 93.0%

move the constraint Ladv from the original model
M and obtain the variantMadv. In this case,Madv

can be optimized with standard mini-batch gradi-
ent descent approach, without playing the minmax
game. We redo above CLIR experiments with the
same settings as above and obtain the retrieval re-
sults of Madv in table 3.

Table 3: Retrieval performance (MAP scores) of the
variant Madv on CLEF collections. + or − indicates
that the improvements or degradations with respect to
our original model M are statistically significant. The
higher value in each row is marked in bold.

Data Lang M Madv

00-02
Fr-En 0.424 0.412−

De-En 0.435 0.418−

It-En 0.426 0.424

03
Fr-En 0.456 0.440−

De-En 0.439 0.435
It-En 0.467 0.448−

04
Fr-En 0.470 0.453−

De-En 0.473 0.465
It-En 0.481 0.469

From the results one can find that when remov-
ing the adversarial component from the original
model, Madv decreases from the original model
M in all retrieval tasks. The differences that are
significant appear in 5 out of 9 retrieval tasks.
The results demonstrate that learning generator
and discriminator in a competing style within the
adversarial learning framework leads to represen-
tation of higher quality, which eventually supports
efficient CLIR. If we compare the variant Madv

with the XCNN model in table 2, we find that
Madv still performs better than XCNN in most

cases. Such a comparison implicitly indicates
that the joint exploitation of monolingual match-
ing constraint, cross-language matching constraint
and translation constraint in a single model is
more efficient than using them separately as in the
XCNN model.

5 Conclusions

In this paper, we propose a novel text representa-
tion approach for CLIR based on the adversarial
learning framework. The learning framework is
implemented as an interplay between an embed-
ding generator process and an adversarial discrim-
inator process, which leads to an optimal represen-
tation that is both language invariant and domain
specific. The embedding generator is learned such
that it explicitly considers both cross-language and
monolingual pairwise ranking signals. In this way,
it can ensure that the learned embeddings bene-
fit from both sources and are directly optimized
for CLIR. To the best of our knowledge, it is the
first time adversarial learning has been applied to
CLIR. Experiments on various language pairs in
CLEF data collection show that our model is sig-
nificantly better than other latent semantic models
for CLIR. Indeed, our model approaches the per-
formance of machine translation and monolingual
baselines.
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