@inproceedings{dai-etal-2018-entity,
title = "Entity Linking within a Social Media Platform: A Case Study on Yelp",
author = "Dai, Hongliang and
Song, Yangqiu and
Qiu, Liwei and
Liu, Rijia",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1227/",
doi = "10.18653/v1/D18-1227",
pages = "2023--2032",
abstract = "In this paper, we study a new entity linking problem where both the entity mentions and the target entities are within a same social media platform. Compared with traditional entity linking problems that link mentions to a knowledge base, this new problem have less information about the target entities. However, if we can successfully link mentions to entities within a social media platform, we can improve a lot of applications such as comparative study in business intelligence and opinion leader finding. To study this problem, we constructed a dataset called Yelp-EL, where the business mentions in Yelp reviews are linked to their corresponding businesses on the platform. We conducted comprehensive experiments and analysis on this dataset with a learning to rank model that takes different types of features as input, as well as a few state-of-the-art entity linking approaches. Our experimental results show that two types of features that are not available in traditional entity linking: social features and location features, can be very helpful for this task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dai-etal-2018-entity">
<titleInfo>
<title>Entity Linking within a Social Media Platform: A Case Study on Yelp</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongliang</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liwei</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rijia</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we study a new entity linking problem where both the entity mentions and the target entities are within a same social media platform. Compared with traditional entity linking problems that link mentions to a knowledge base, this new problem have less information about the target entities. However, if we can successfully link mentions to entities within a social media platform, we can improve a lot of applications such as comparative study in business intelligence and opinion leader finding. To study this problem, we constructed a dataset called Yelp-EL, where the business mentions in Yelp reviews are linked to their corresponding businesses on the platform. We conducted comprehensive experiments and analysis on this dataset with a learning to rank model that takes different types of features as input, as well as a few state-of-the-art entity linking approaches. Our experimental results show that two types of features that are not available in traditional entity linking: social features and location features, can be very helpful for this task.</abstract>
<identifier type="citekey">dai-etal-2018-entity</identifier>
<identifier type="doi">10.18653/v1/D18-1227</identifier>
<location>
<url>https://aclanthology.org/D18-1227/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2023</start>
<end>2032</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Entity Linking within a Social Media Platform: A Case Study on Yelp
%A Dai, Hongliang
%A Song, Yangqiu
%A Qiu, Liwei
%A Liu, Rijia
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F dai-etal-2018-entity
%X In this paper, we study a new entity linking problem where both the entity mentions and the target entities are within a same social media platform. Compared with traditional entity linking problems that link mentions to a knowledge base, this new problem have less information about the target entities. However, if we can successfully link mentions to entities within a social media platform, we can improve a lot of applications such as comparative study in business intelligence and opinion leader finding. To study this problem, we constructed a dataset called Yelp-EL, where the business mentions in Yelp reviews are linked to their corresponding businesses on the platform. We conducted comprehensive experiments and analysis on this dataset with a learning to rank model that takes different types of features as input, as well as a few state-of-the-art entity linking approaches. Our experimental results show that two types of features that are not available in traditional entity linking: social features and location features, can be very helpful for this task.
%R 10.18653/v1/D18-1227
%U https://aclanthology.org/D18-1227/
%U https://doi.org/10.18653/v1/D18-1227
%P 2023-2032
Markdown (Informal)
[Entity Linking within a Social Media Platform: A Case Study on Yelp](https://aclanthology.org/D18-1227/) (Dai et al., EMNLP 2018)
ACL