@inproceedings{shore-skantze-2018-using,
title = "Using Lexical Alignment and Referring Ability to Address Data Sparsity in Situated Dialog Reference Resolution",
author = "Shore, Todd and
Skantze, Gabriel",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1252",
doi = "10.18653/v1/D18-1252",
pages = "2288--2297",
abstract = "Referring to entities in situated dialog is a collaborative process, whereby interlocutors often expand, repair and/or replace referring expressions in an iterative process, converging on conceptual pacts of referring language use in doing so. Nevertheless, much work on exophoric reference resolution (i.e. resolution of references to entities outside of a given text) follows a literary model, whereby individual referring expressions are interpreted as unique identifiers of their referents given the state of the dialog the referring expression is initiated. In this paper, we address this collaborative nature to improve dialogic reference resolution in two ways: First, we trained a words-as-classifiers logistic regression model of word semantics and incrementally adapt the model to idiosyncratic language between dyad partners during evaluation of the dialog. We then used these semantic models to learn the general referring ability of each word, which is independent of referent features. These methods facilitate accurate automatic reference resolution in situated dialog without annotation of referring expressions, even with little background data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shore-skantze-2018-using">
<titleInfo>
<title>Using Lexical Alignment and Referring Ability to Address Data Sparsity in Situated Dialog Reference Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Todd</namePart>
<namePart type="family">Shore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Referring to entities in situated dialog is a collaborative process, whereby interlocutors often expand, repair and/or replace referring expressions in an iterative process, converging on conceptual pacts of referring language use in doing so. Nevertheless, much work on exophoric reference resolution (i.e. resolution of references to entities outside of a given text) follows a literary model, whereby individual referring expressions are interpreted as unique identifiers of their referents given the state of the dialog the referring expression is initiated. In this paper, we address this collaborative nature to improve dialogic reference resolution in two ways: First, we trained a words-as-classifiers logistic regression model of word semantics and incrementally adapt the model to idiosyncratic language between dyad partners during evaluation of the dialog. We then used these semantic models to learn the general referring ability of each word, which is independent of referent features. These methods facilitate accurate automatic reference resolution in situated dialog without annotation of referring expressions, even with little background data.</abstract>
<identifier type="citekey">shore-skantze-2018-using</identifier>
<identifier type="doi">10.18653/v1/D18-1252</identifier>
<location>
<url>https://aclanthology.org/D18-1252</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2288</start>
<end>2297</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Lexical Alignment and Referring Ability to Address Data Sparsity in Situated Dialog Reference Resolution
%A Shore, Todd
%A Skantze, Gabriel
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F shore-skantze-2018-using
%X Referring to entities in situated dialog is a collaborative process, whereby interlocutors often expand, repair and/or replace referring expressions in an iterative process, converging on conceptual pacts of referring language use in doing so. Nevertheless, much work on exophoric reference resolution (i.e. resolution of references to entities outside of a given text) follows a literary model, whereby individual referring expressions are interpreted as unique identifiers of their referents given the state of the dialog the referring expression is initiated. In this paper, we address this collaborative nature to improve dialogic reference resolution in two ways: First, we trained a words-as-classifiers logistic regression model of word semantics and incrementally adapt the model to idiosyncratic language between dyad partners during evaluation of the dialog. We then used these semantic models to learn the general referring ability of each word, which is independent of referent features. These methods facilitate accurate automatic reference resolution in situated dialog without annotation of referring expressions, even with little background data.
%R 10.18653/v1/D18-1252
%U https://aclanthology.org/D18-1252
%U https://doi.org/10.18653/v1/D18-1252
%P 2288-2297
Markdown (Informal)
[Using Lexical Alignment and Referring Ability to Address Data Sparsity in Situated Dialog Reference Resolution](https://aclanthology.org/D18-1252) (Shore & Skantze, EMNLP 2018)
ACL