@inproceedings{haponchyk-etal-2018-supervised,
title = "Supervised Clustering of Questions into Intents for Dialog System Applications",
author = "Haponchyk, Iryna and
Uva, Antonio and
Yu, Seunghak and
Uryupina, Olga and
Moschitti, Alessandro",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1254",
doi = "10.18653/v1/D18-1254",
pages = "2310--2321",
abstract = "Modern automated dialog systems require complex dialog managers able to deal with user intent triggered by high-level semantic questions. In this paper, we propose a model for automatically clustering questions into user intents to help the design tasks. Since questions are short texts, uncovering their semantics to group them together can be very challenging. We approach the problem by using powerful semantic classifiers from question duplicate/matching research along with a novel idea of supervised clustering methods based on structured output. We test our approach on two intent clustering corpora, showing an impressive improvement over previous methods for two languages/domains.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="haponchyk-etal-2018-supervised">
<titleInfo>
<title>Supervised Clustering of Questions into Intents for Dialog System Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Haponchyk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Uva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seunghak</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Uryupina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Moschitti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Modern automated dialog systems require complex dialog managers able to deal with user intent triggered by high-level semantic questions. In this paper, we propose a model for automatically clustering questions into user intents to help the design tasks. Since questions are short texts, uncovering their semantics to group them together can be very challenging. We approach the problem by using powerful semantic classifiers from question duplicate/matching research along with a novel idea of supervised clustering methods based on structured output. We test our approach on two intent clustering corpora, showing an impressive improvement over previous methods for two languages/domains.</abstract>
<identifier type="citekey">haponchyk-etal-2018-supervised</identifier>
<identifier type="doi">10.18653/v1/D18-1254</identifier>
<location>
<url>https://aclanthology.org/D18-1254</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2310</start>
<end>2321</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Supervised Clustering of Questions into Intents for Dialog System Applications
%A Haponchyk, Iryna
%A Uva, Antonio
%A Yu, Seunghak
%A Uryupina, Olga
%A Moschitti, Alessandro
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F haponchyk-etal-2018-supervised
%X Modern automated dialog systems require complex dialog managers able to deal with user intent triggered by high-level semantic questions. In this paper, we propose a model for automatically clustering questions into user intents to help the design tasks. Since questions are short texts, uncovering their semantics to group them together can be very challenging. We approach the problem by using powerful semantic classifiers from question duplicate/matching research along with a novel idea of supervised clustering methods based on structured output. We test our approach on two intent clustering corpora, showing an impressive improvement over previous methods for two languages/domains.
%R 10.18653/v1/D18-1254
%U https://aclanthology.org/D18-1254
%U https://doi.org/10.18653/v1/D18-1254
%P 2310-2321
Markdown (Informal)
[Supervised Clustering of Questions into Intents for Dialog System Applications](https://aclanthology.org/D18-1254) (Haponchyk et al., EMNLP 2018)
ACL