@inproceedings{hazarika-etal-2018-icon,
    title = "{ICON}: Interactive Conversational Memory Network for Multimodal Emotion Detection",
    author = "Hazarika, Devamanyu  and
      Poria, Soujanya  and
      Mihalcea, Rada  and
      Cambria, Erik  and
      Zimmermann, Roger",
    editor = "Riloff, Ellen  and
      Chiang, David  and
      Hockenmaier, Julia  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D18-1280/",
    doi = "10.18653/v1/D18-1280",
    pages = "2594--2604",
    abstract = "Emotion recognition in conversations is crucial for building empathetic machines. Present works in this domain do not explicitly consider the inter-personal influences that thrive in the emotional dynamics of dialogues. To this end, we propose Interactive COnversational memory Network (ICON), a multimodal emotion detection framework that extracts multimodal features from conversational videos and hierarchically models the self- and inter-speaker emotional influences into global memories. Such memories generate contextual summaries which aid in predicting the emotional orientation of utterance-videos. Our model outperforms state-of-the-art networks on multiple classification and regression tasks in two benchmark datasets."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hazarika-etal-2018-icon">
    <titleInfo>
        <title>ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Devamanyu</namePart>
        <namePart type="family">Hazarika</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Soujanya</namePart>
        <namePart type="family">Poria</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rada</namePart>
        <namePart type="family">Mihalcea</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Erik</namePart>
        <namePart type="family">Cambria</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Roger</namePart>
        <namePart type="family">Zimmermann</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-oct-nov</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ellen</namePart>
            <namePart type="family">Riloff</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Chiang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Julia</namePart>
            <namePart type="family">Hockenmaier</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jun’ichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Emotion recognition in conversations is crucial for building empathetic machines. Present works in this domain do not explicitly consider the inter-personal influences that thrive in the emotional dynamics of dialogues. To this end, we propose Interactive COnversational memory Network (ICON), a multimodal emotion detection framework that extracts multimodal features from conversational videos and hierarchically models the self- and inter-speaker emotional influences into global memories. Such memories generate contextual summaries which aid in predicting the emotional orientation of utterance-videos. Our model outperforms state-of-the-art networks on multiple classification and regression tasks in two benchmark datasets.</abstract>
    <identifier type="citekey">hazarika-etal-2018-icon</identifier>
    <identifier type="doi">10.18653/v1/D18-1280</identifier>
    <location>
        <url>https://aclanthology.org/D18-1280/</url>
    </location>
    <part>
        <date>2018-oct-nov</date>
        <extent unit="page">
            <start>2594</start>
            <end>2604</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection
%A Hazarika, Devamanyu
%A Poria, Soujanya
%A Mihalcea, Rada
%A Cambria, Erik
%A Zimmermann, Roger
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F hazarika-etal-2018-icon
%X Emotion recognition in conversations is crucial for building empathetic machines. Present works in this domain do not explicitly consider the inter-personal influences that thrive in the emotional dynamics of dialogues. To this end, we propose Interactive COnversational memory Network (ICON), a multimodal emotion detection framework that extracts multimodal features from conversational videos and hierarchically models the self- and inter-speaker emotional influences into global memories. Such memories generate contextual summaries which aid in predicting the emotional orientation of utterance-videos. Our model outperforms state-of-the-art networks on multiple classification and regression tasks in two benchmark datasets.
%R 10.18653/v1/D18-1280
%U https://aclanthology.org/D18-1280/
%U https://doi.org/10.18653/v1/D18-1280
%P 2594-2604
Markdown (Informal)
[ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection](https://aclanthology.org/D18-1280/) (Hazarika et al., EMNLP 2018)
ACL