@inproceedings{brunato-etal-2018-sentence,
title = "Is this Sentence Difficult? Do you Agree?",
author = "Brunato, Dominique and
De Mattei, Lorenzo and
Dell{'}Orletta, Felice and
Iavarone, Benedetta and
Venturi, Giulia",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1289/",
doi = "10.18653/v1/D18-1289",
pages = "2690--2699",
abstract = "In this paper, we present a crowdsourcing-based approach to model the human perception of sentence complexity. We collect a large corpus of sentences rated with judgments of complexity for two typologically-different languages, Italian and English. We test our approach in two experimental scenarios aimed to investigate the contribution of a wide set of lexical, morpho-syntactic and syntactic phenomena in predicting i) the degree of agreement among annotators independently from the assigned judgment and ii) the perception of sentence complexity."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="brunato-etal-2018-sentence">
<titleInfo>
<title>Is this Sentence Difficult? Do you Agree?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominique</namePart>
<namePart type="family">Brunato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lorenzo</namePart>
<namePart type="family">De Mattei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benedetta</namePart>
<namePart type="family">Iavarone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Venturi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present a crowdsourcing-based approach to model the human perception of sentence complexity. We collect a large corpus of sentences rated with judgments of complexity for two typologically-different languages, Italian and English. We test our approach in two experimental scenarios aimed to investigate the contribution of a wide set of lexical, morpho-syntactic and syntactic phenomena in predicting i) the degree of agreement among annotators independently from the assigned judgment and ii) the perception of sentence complexity.</abstract>
<identifier type="citekey">brunato-etal-2018-sentence</identifier>
<identifier type="doi">10.18653/v1/D18-1289</identifier>
<location>
<url>https://aclanthology.org/D18-1289/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2690</start>
<end>2699</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Is this Sentence Difficult? Do you Agree?
%A Brunato, Dominique
%A De Mattei, Lorenzo
%A Dell’Orletta, Felice
%A Iavarone, Benedetta
%A Venturi, Giulia
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F brunato-etal-2018-sentence
%X In this paper, we present a crowdsourcing-based approach to model the human perception of sentence complexity. We collect a large corpus of sentences rated with judgments of complexity for two typologically-different languages, Italian and English. We test our approach in two experimental scenarios aimed to investigate the contribution of a wide set of lexical, morpho-syntactic and syntactic phenomena in predicting i) the degree of agreement among annotators independently from the assigned judgment and ii) the perception of sentence complexity.
%R 10.18653/v1/D18-1289
%U https://aclanthology.org/D18-1289/
%U https://doi.org/10.18653/v1/D18-1289
%P 2690-2699
Markdown (Informal)
[Is this Sentence Difficult? Do you Agree?](https://aclanthology.org/D18-1289/) (Brunato et al., EMNLP 2018)
ACL
- Dominique Brunato, Lorenzo De Mattei, Felice Dell’Orletta, Benedetta Iavarone, and Giulia Venturi. 2018. Is this Sentence Difficult? Do you Agree?. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2690–2699, Brussels, Belgium. Association for Computational Linguistics.