@inproceedings{pham-etal-2018-fixing,
title = "Fixing Translation Divergences in Parallel Corpora for Neural {MT}",
author = "Pham, MinhQuang and
Crego, Josep and
Senellart, Jean and
Yvon, Fran\c cois",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun'ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1328/",
doi = "10.18653/v1/D18-1328",
pages = "2967--2973",
abstract = "Corpus-based approaches to machine translation rely on the availability of clean parallel corpora. Such resources are scarce, and because of the automatic processes involved in their preparation, they are often noisy. This paper describes an unsupervised method for detecting translation divergences in parallel sentences. We rely on a neural network that computes cross-lingual sentence similarity scores, which are then used to effectively filter out divergent translations. Furthermore, similarity scores predicted by the network are used to identify and fix some partial divergences, yielding additional parallel segments. We evaluate these methods for English-French and English-German machine translation tasks, and show that using filtered/corrected corpora actually improves MT performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pham-etal-2018-fixing">
<titleInfo>
<title>Fixing Translation Divergences in Parallel Corpora for Neural MT</title>
</titleInfo>
<name type="personal">
<namePart type="given">MinhQuang</namePart>
<namePart type="family">Pham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josep</namePart>
<namePart type="family">Crego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Senellart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fran\c</namePart>
<namePart type="given">cois</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Corpus-based approaches to machine translation rely on the availability of clean parallel corpora. Such resources are scarce, and because of the automatic processes involved in their preparation, they are often noisy. This paper describes an unsupervised method for detecting translation divergences in parallel sentences. We rely on a neural network that computes cross-lingual sentence similarity scores, which are then used to effectively filter out divergent translations. Furthermore, similarity scores predicted by the network are used to identify and fix some partial divergences, yielding additional parallel segments. We evaluate these methods for English-French and English-German machine translation tasks, and show that using filtered/corrected corpora actually improves MT performance.</abstract>
<identifier type="citekey">pham-etal-2018-fixing</identifier>
<identifier type="doi">10.18653/v1/D18-1328</identifier>
<location>
<url>https://aclanthology.org/D18-1328/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2967</start>
<end>2973</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fixing Translation Divergences in Parallel Corpora for Neural MT
%A Pham, MinhQuang
%A Crego, Josep
%A Senellart, Jean
%A Yvon, Fran\c cois
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F pham-etal-2018-fixing
%X Corpus-based approaches to machine translation rely on the availability of clean parallel corpora. Such resources are scarce, and because of the automatic processes involved in their preparation, they are often noisy. This paper describes an unsupervised method for detecting translation divergences in parallel sentences. We rely on a neural network that computes cross-lingual sentence similarity scores, which are then used to effectively filter out divergent translations. Furthermore, similarity scores predicted by the network are used to identify and fix some partial divergences, yielding additional parallel segments. We evaluate these methods for English-French and English-German machine translation tasks, and show that using filtered/corrected corpora actually improves MT performance.
%R 10.18653/v1/D18-1328
%U https://aclanthology.org/D18-1328/
%U https://doi.org/10.18653/v1/D18-1328
%P 2967-2973
Markdown (Informal)
[Fixing Translation Divergences in Parallel Corpora for Neural MT](https://aclanthology.org/D18-1328/) (Pham et al., EMNLP 2018)
ACL