@inproceedings{vanmassenhove-etal-2018-getting,
title = "Getting Gender Right in Neural Machine Translation",
author = "Vanmassenhove, Eva and
Hardmeier, Christian and
Way, Andy",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1334/",
doi = "10.18653/v1/D18-1334",
pages = "3003--3008",
abstract = "Speakers of different languages must attend to and encode strikingly different aspects of the world in order to use their language correctly (Sapir, 1921; Slobin, 1996). One such difference is related to the way gender is expressed in a language. Saying {\textquotedblleft}I am happy{\textquotedblright} in English, does not encode any additional knowledge of the speaker that uttered the sentence. However, many other languages do have grammatical gender systems and so such knowledge would be encoded. In order to correctly translate such a sentence into, say, French, the inherent gender information needs to be retained/recovered. The same sentence would become either {\textquotedblleft}Je suis heureux{\textquotedblright}, for a male speaker or {\textquotedblleft}Je suis heureuse{\textquotedblright} for a female one. Apart from morphological agreement, demographic factors (gender, age, etc.) also influence our use of language in terms of word choices or syntactic constructions (Tannen, 1991; Pennebaker et al., 2003). We integrate gender information into NMT systems. Our contribution is two-fold: (1) the compilation of large datasets with speaker information for 20 language pairs, and (2) a simple set of experiments that incorporate gender information into NMT for multiple language pairs. Our experiments show that adding a gender feature to an NMT system significantly improves the translation quality for some language pairs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vanmassenhove-etal-2018-getting">
<titleInfo>
<title>Getting Gender Right in Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Vanmassenhove</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andy</namePart>
<namePart type="family">Way</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Speakers of different languages must attend to and encode strikingly different aspects of the world in order to use their language correctly (Sapir, 1921; Slobin, 1996). One such difference is related to the way gender is expressed in a language. Saying “I am happy” in English, does not encode any additional knowledge of the speaker that uttered the sentence. However, many other languages do have grammatical gender systems and so such knowledge would be encoded. In order to correctly translate such a sentence into, say, French, the inherent gender information needs to be retained/recovered. The same sentence would become either “Je suis heureux”, for a male speaker or “Je suis heureuse” for a female one. Apart from morphological agreement, demographic factors (gender, age, etc.) also influence our use of language in terms of word choices or syntactic constructions (Tannen, 1991; Pennebaker et al., 2003). We integrate gender information into NMT systems. Our contribution is two-fold: (1) the compilation of large datasets with speaker information for 20 language pairs, and (2) a simple set of experiments that incorporate gender information into NMT for multiple language pairs. Our experiments show that adding a gender feature to an NMT system significantly improves the translation quality for some language pairs.</abstract>
<identifier type="citekey">vanmassenhove-etal-2018-getting</identifier>
<identifier type="doi">10.18653/v1/D18-1334</identifier>
<location>
<url>https://aclanthology.org/D18-1334/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3003</start>
<end>3008</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Getting Gender Right in Neural Machine Translation
%A Vanmassenhove, Eva
%A Hardmeier, Christian
%A Way, Andy
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F vanmassenhove-etal-2018-getting
%X Speakers of different languages must attend to and encode strikingly different aspects of the world in order to use their language correctly (Sapir, 1921; Slobin, 1996). One such difference is related to the way gender is expressed in a language. Saying “I am happy” in English, does not encode any additional knowledge of the speaker that uttered the sentence. However, many other languages do have grammatical gender systems and so such knowledge would be encoded. In order to correctly translate such a sentence into, say, French, the inherent gender information needs to be retained/recovered. The same sentence would become either “Je suis heureux”, for a male speaker or “Je suis heureuse” for a female one. Apart from morphological agreement, demographic factors (gender, age, etc.) also influence our use of language in terms of word choices or syntactic constructions (Tannen, 1991; Pennebaker et al., 2003). We integrate gender information into NMT systems. Our contribution is two-fold: (1) the compilation of large datasets with speaker information for 20 language pairs, and (2) a simple set of experiments that incorporate gender information into NMT for multiple language pairs. Our experiments show that adding a gender feature to an NMT system significantly improves the translation quality for some language pairs.
%R 10.18653/v1/D18-1334
%U https://aclanthology.org/D18-1334/
%U https://doi.org/10.18653/v1/D18-1334
%P 3003-3008
Markdown (Informal)
[Getting Gender Right in Neural Machine Translation](https://aclanthology.org/D18-1334/) (Vanmassenhove et al., EMNLP 2018)
ACL
- Eva Vanmassenhove, Christian Hardmeier, and Andy Way. 2018. Getting Gender Right in Neural Machine Translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3003–3008, Brussels, Belgium. Association for Computational Linguistics.