@inproceedings{alinejad-etal-2018-prediction,
title = "Prediction Improves Simultaneous Neural Machine Translation",
author = "Alinejad, Ashkan and
Siahbani, Maryam and
Sarkar, Anoop",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1337/",
doi = "10.18653/v1/D18-1337",
pages = "3022--3027",
abstract = "Simultaneous speech translation aims to maintain translation quality while minimizing the delay between reading input and incrementally producing the output. We propose a new general-purpose prediction action which predicts future words in the input to improve quality and minimize delay in simultaneous translation. We train this agent using reinforcement learning with a novel reward function. Our agent with prediction has better translation quality and less delay compared to an agent-based simultaneous translation system without prediction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alinejad-etal-2018-prediction">
<titleInfo>
<title>Prediction Improves Simultaneous Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashkan</namePart>
<namePart type="family">Alinejad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maryam</namePart>
<namePart type="family">Siahbani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Simultaneous speech translation aims to maintain translation quality while minimizing the delay between reading input and incrementally producing the output. We propose a new general-purpose prediction action which predicts future words in the input to improve quality and minimize delay in simultaneous translation. We train this agent using reinforcement learning with a novel reward function. Our agent with prediction has better translation quality and less delay compared to an agent-based simultaneous translation system without prediction.</abstract>
<identifier type="citekey">alinejad-etal-2018-prediction</identifier>
<identifier type="doi">10.18653/v1/D18-1337</identifier>
<location>
<url>https://aclanthology.org/D18-1337/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3022</start>
<end>3027</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Prediction Improves Simultaneous Neural Machine Translation
%A Alinejad, Ashkan
%A Siahbani, Maryam
%A Sarkar, Anoop
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F alinejad-etal-2018-prediction
%X Simultaneous speech translation aims to maintain translation quality while minimizing the delay between reading input and incrementally producing the output. We propose a new general-purpose prediction action which predicts future words in the input to improve quality and minimize delay in simultaneous translation. We train this agent using reinforcement learning with a novel reward function. Our agent with prediction has better translation quality and less delay compared to an agent-based simultaneous translation system without prediction.
%R 10.18653/v1/D18-1337
%U https://aclanthology.org/D18-1337/
%U https://doi.org/10.18653/v1/D18-1337
%P 3022-3027
Markdown (Informal)
[Prediction Improves Simultaneous Neural Machine Translation](https://aclanthology.org/D18-1337/) (Alinejad et al., EMNLP 2018)
ACL