@inproceedings{vu-haffari-2018-automatic,
title = "Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter Approach",
author = "Vu, Thuy-Trang and
Haffari, Gholamreza",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1341/",
doi = "10.18653/v1/D18-1341",
pages = "3048--3053",
abstract = "Automated Post-Editing (PE) is the task of automatically correct common and repetitive errors found in machine translation (MT) output. In this paper, we present a neural programmer-interpreter approach to this task, resembling the way that human perform post-editing using discrete edit operations, wich we refer to as programs. Our model outperforms previous neural models for inducing PE programs on the WMT17 APE task for German-English up to +1 BLEU score and -0.7 TER scores."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vu-haffari-2018-automatic">
<titleInfo>
<title>Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thuy-Trang</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gholamreza</namePart>
<namePart type="family">Haffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated Post-Editing (PE) is the task of automatically correct common and repetitive errors found in machine translation (MT) output. In this paper, we present a neural programmer-interpreter approach to this task, resembling the way that human perform post-editing using discrete edit operations, wich we refer to as programs. Our model outperforms previous neural models for inducing PE programs on the WMT17 APE task for German-English up to +1 BLEU score and -0.7 TER scores.</abstract>
<identifier type="citekey">vu-haffari-2018-automatic</identifier>
<identifier type="doi">10.18653/v1/D18-1341</identifier>
<location>
<url>https://aclanthology.org/D18-1341/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3048</start>
<end>3053</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter Approach
%A Vu, Thuy-Trang
%A Haffari, Gholamreza
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F vu-haffari-2018-automatic
%X Automated Post-Editing (PE) is the task of automatically correct common and repetitive errors found in machine translation (MT) output. In this paper, we present a neural programmer-interpreter approach to this task, resembling the way that human perform post-editing using discrete edit operations, wich we refer to as programs. Our model outperforms previous neural models for inducing PE programs on the WMT17 APE task for German-English up to +1 BLEU score and -0.7 TER scores.
%R 10.18653/v1/D18-1341
%U https://aclanthology.org/D18-1341/
%U https://doi.org/10.18653/v1/D18-1341
%P 3048-3053
Markdown (Informal)
[Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter Approach](https://aclanthology.org/D18-1341/) (Vu & Haffari, EMNLP 2018)
ACL