@inproceedings{yu-etal-2018-strength,
title = "On the Strength of Character Language Models for Multilingual Named Entity Recognition",
author = "Yu, Xiaodong and
Mayhew, Stephen and
Sammons, Mark and
Roth, Dan",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1345",
doi = "10.18653/v1/D18-1345",
pages = "3073--3077",
abstract = "Character-level patterns have been widely used as features in English Named Entity Recognition (NER) systems. However, to date there has been no direct investigation of the inherent differences between name and nonname tokens in text, nor whether this property holds across multiple languages. This paper analyzes the capabilities of corpus-agnostic Character-level Language Models (CLMs) in the binary task of distinguishing name tokens from non-name tokens. We demonstrate that CLMs provide a simple and powerful model for capturing these differences, identifying named entity tokens in a diverse set of languages at close to the performance of full NER systems. Moreover, by adding very simple CLM-based features we can significantly improve the performance of an off-the-shelf NER system for multiple languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2018-strength">
<titleInfo>
<title>On the Strength of Character Language Models for Multilingual Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaodong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Mayhew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Sammons</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Character-level patterns have been widely used as features in English Named Entity Recognition (NER) systems. However, to date there has been no direct investigation of the inherent differences between name and nonname tokens in text, nor whether this property holds across multiple languages. This paper analyzes the capabilities of corpus-agnostic Character-level Language Models (CLMs) in the binary task of distinguishing name tokens from non-name tokens. We demonstrate that CLMs provide a simple and powerful model for capturing these differences, identifying named entity tokens in a diverse set of languages at close to the performance of full NER systems. Moreover, by adding very simple CLM-based features we can significantly improve the performance of an off-the-shelf NER system for multiple languages.</abstract>
<identifier type="citekey">yu-etal-2018-strength</identifier>
<identifier type="doi">10.18653/v1/D18-1345</identifier>
<location>
<url>https://aclanthology.org/D18-1345</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3073</start>
<end>3077</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Strength of Character Language Models for Multilingual Named Entity Recognition
%A Yu, Xiaodong
%A Mayhew, Stephen
%A Sammons, Mark
%A Roth, Dan
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F yu-etal-2018-strength
%X Character-level patterns have been widely used as features in English Named Entity Recognition (NER) systems. However, to date there has been no direct investigation of the inherent differences between name and nonname tokens in text, nor whether this property holds across multiple languages. This paper analyzes the capabilities of corpus-agnostic Character-level Language Models (CLMs) in the binary task of distinguishing name tokens from non-name tokens. We demonstrate that CLMs provide a simple and powerful model for capturing these differences, identifying named entity tokens in a diverse set of languages at close to the performance of full NER systems. Moreover, by adding very simple CLM-based features we can significantly improve the performance of an off-the-shelf NER system for multiple languages.
%R 10.18653/v1/D18-1345
%U https://aclanthology.org/D18-1345
%U https://doi.org/10.18653/v1/D18-1345
%P 3073-3077
Markdown (Informal)
[On the Strength of Character Language Models for Multilingual Named Entity Recognition](https://aclanthology.org/D18-1345) (Yu et al., EMNLP 2018)
ACL