@inproceedings{kleinberg-etal-2018-identifying,
title = "Identifying the sentiment styles of {Y}ou{T}ube{'}s vloggers",
author = "Kleinberg, Bennett and
Mozes, Maximilian and
van der Vegt, Isabelle",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1394",
doi = "10.18653/v1/D18-1394",
pages = "3581--3590",
abstract = "Vlogs provide a rich public source of data in a novel setting. This paper examined the continuous sentiment styles employed in 27,333 vlogs using a dynamic intra-textual approach to sentiment analysis. Using unsupervised clustering, we identified seven distinct continuous sentiment trajectories characterized by fluctuations of sentiment throughout a vlog{'}s narrative time. We provide a taxonomy of these seven continuous sentiment styles and found that vlogs whose sentiment builds up towards a positive ending are the most prevalent in our sample. Gender was associated with preferences for different continuous sentiment trajectories. This paper discusses the findings with respect to previous work and concludes with an outlook towards possible uses of the corpus, method and findings of this paper for related areas of research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kleinberg-etal-2018-identifying">
<titleInfo>
<title>Identifying the sentiment styles of YouTube’s vloggers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bennett</namePart>
<namePart type="family">Kleinberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Mozes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">van der Vegt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Vlogs provide a rich public source of data in a novel setting. This paper examined the continuous sentiment styles employed in 27,333 vlogs using a dynamic intra-textual approach to sentiment analysis. Using unsupervised clustering, we identified seven distinct continuous sentiment trajectories characterized by fluctuations of sentiment throughout a vlog’s narrative time. We provide a taxonomy of these seven continuous sentiment styles and found that vlogs whose sentiment builds up towards a positive ending are the most prevalent in our sample. Gender was associated with preferences for different continuous sentiment trajectories. This paper discusses the findings with respect to previous work and concludes with an outlook towards possible uses of the corpus, method and findings of this paper for related areas of research.</abstract>
<identifier type="citekey">kleinberg-etal-2018-identifying</identifier>
<identifier type="doi">10.18653/v1/D18-1394</identifier>
<location>
<url>https://aclanthology.org/D18-1394</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3581</start>
<end>3590</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying the sentiment styles of YouTube’s vloggers
%A Kleinberg, Bennett
%A Mozes, Maximilian
%A van der Vegt, Isabelle
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kleinberg-etal-2018-identifying
%X Vlogs provide a rich public source of data in a novel setting. This paper examined the continuous sentiment styles employed in 27,333 vlogs using a dynamic intra-textual approach to sentiment analysis. Using unsupervised clustering, we identified seven distinct continuous sentiment trajectories characterized by fluctuations of sentiment throughout a vlog’s narrative time. We provide a taxonomy of these seven continuous sentiment styles and found that vlogs whose sentiment builds up towards a positive ending are the most prevalent in our sample. Gender was associated with preferences for different continuous sentiment trajectories. This paper discusses the findings with respect to previous work and concludes with an outlook towards possible uses of the corpus, method and findings of this paper for related areas of research.
%R 10.18653/v1/D18-1394
%U https://aclanthology.org/D18-1394
%U https://doi.org/10.18653/v1/D18-1394
%P 3581-3590
Markdown (Informal)
[Identifying the sentiment styles of YouTube’s vloggers](https://aclanthology.org/D18-1394) (Kleinberg et al., EMNLP 2018)
ACL
- Bennett Kleinberg, Maximilian Mozes, and Isabelle van der Vegt. 2018. Identifying the sentiment styles of YouTube’s vloggers. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3581–3590, Brussels, Belgium. Association for Computational Linguistics.