@inproceedings{goldin-etal-2018-native,
title = "Native Language Identification with User Generated Content",
author = "Goldin, Gili and
Rabinovich, Ella and
Wintner, Shuly",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1395",
doi = "10.18653/v1/D18-1395",
pages = "3591--3601",
abstract = "We address the task of native language identification in the context of social media content, where authors are highly-fluent, advanced nonnative speakers (of English). Using both linguistically-motivated features and the characteristics of the social media outlet, we obtain high accuracy on this challenging task. We provide a detailed analysis of the features that sheds light on differences between native and nonnative speakers, and among nonnative speakers with different backgrounds.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="goldin-etal-2018-native">
<titleInfo>
<title>Native Language Identification with User Generated Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gili</namePart>
<namePart type="family">Goldin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ella</namePart>
<namePart type="family">Rabinovich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuly</namePart>
<namePart type="family">Wintner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address the task of native language identification in the context of social media content, where authors are highly-fluent, advanced nonnative speakers (of English). Using both linguistically-motivated features and the characteristics of the social media outlet, we obtain high accuracy on this challenging task. We provide a detailed analysis of the features that sheds light on differences between native and nonnative speakers, and among nonnative speakers with different backgrounds.</abstract>
<identifier type="citekey">goldin-etal-2018-native</identifier>
<identifier type="doi">10.18653/v1/D18-1395</identifier>
<location>
<url>https://aclanthology.org/D18-1395</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3591</start>
<end>3601</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Native Language Identification with User Generated Content
%A Goldin, Gili
%A Rabinovich, Ella
%A Wintner, Shuly
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F goldin-etal-2018-native
%X We address the task of native language identification in the context of social media content, where authors are highly-fluent, advanced nonnative speakers (of English). Using both linguistically-motivated features and the characteristics of the social media outlet, we obtain high accuracy on this challenging task. We provide a detailed analysis of the features that sheds light on differences between native and nonnative speakers, and among nonnative speakers with different backgrounds.
%R 10.18653/v1/D18-1395
%U https://aclanthology.org/D18-1395
%U https://doi.org/10.18653/v1/D18-1395
%P 3591-3601
Markdown (Informal)
[Native Language Identification with User Generated Content](https://aclanthology.org/D18-1395) (Goldin et al., EMNLP 2018)
ACL