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Abstract

This paper presents a Discriminative Deep
Dyna-Q (D3Q) approach to improving the ef-
fectiveness and robustness of Deep Dyna-Q
(DDQ), a recently proposed framework that
extends the Dyna-Q algorithm to integrate
planning for task-completion dialogue policy
learning. To obviate DDQ’s high dependency
on the quality of simulated experiences, we in-
corporate an RNN-based discriminator in D3Q
to differentiate simulated experience from real
user experience in order to control the quality
of training data. Experiments show that D3Q
significantly outperforms DDQ by controlling
the quality of simulated experience used for
planning. The effectiveness and robustness of
D3Q is further demonstrated in a domain ex-
tension setting, where the agent’s capability of
adapting to a changing environment is tested.1

1 Introduction

There are many virtual assistants commercially
available today, such as Apple’s Siri, Google’s
Home, Microsoft’s Cortana, and Amazon’s Echo.
With a well-designed dialogue system as an intel-
ligent assistant, people can accomplish tasks via
natural language interactions. Recent advance in
deep learning has also inspired many studies in
neural dialogue systems (Wen et al., 2017; Bordes
et al., 2017; Dhingra et al., 2017; Li et al., 2017).

A key component in such task-completion di-
alogue systems is dialogue policy, which is of-
ten formulated as a reinforcement learning (RL)
problem (Levin et al., 1997; Young et al., 2013).
However, learning dialogue policy via RL from
the scratch in real-world systems is very challeng-
ing, due to the inevitable dependency on the envi-
ronment from which a learner acquires knowledge
and receives rewards. In a dialogue scenario, real

1The source code is available at https://github.
com/MiuLab/D3Q.

users act as the environment in the RL framework,
and the system communicates with real users con-
stantly to learn dialogue policy. Such process
is very time-consuming and expensive for online
learning.

One plausible strategy is to leverage user
simulators trained on human conversational
data (Schatzmann et al., 2007; Li et al., 2016),
which allows the agent to learn dialogue pol-
icy by interacting with the simulator instead of
real users. The user simulator can provide infi-
nite simulated experiences without additional cost,
and the trained system can be deployed and then
fine-tuned through interactions with real users (Su
et al., 2016; Lipton et al., 2016; Zhao and Eske-
nazi, 2016; Williams et al., 2017; Dhingra et al.,
2017; Li et al., 2017; Liu and Lane, 2017; Peng
et al., 2017b; Budzianowski et al., 2017; Peng
et al., 2017a; Tang et al., 2018).

However, due to the complexity of real con-
versations and biases in the design of user sim-
ulators, there always exists the discrepancy be-
tween real users and simulated users. Further-
more, to the best of our knowledge, there is no uni-
versally accepted metric for evaluating user sim-
ulators for dialogue purpose (Pietquin and Hastie,
2013). Therefore, it remains controversial whether
training task-completion dialogue agent via simu-
lated users is a valid and effective approach.

A previous study, called Deep Dyna-Q
(DDQ) (Peng et al., 2018), proposed a new strat-
egy to learn dialogue policies with real users by
combining the Dyna-Q framework (Sutton, 1990)
with deep learning models. This framework in-
corporates a learnable environment model (world
model) into the dialogue policy learning pipeline,
which simulates dynamics of the environment and
generates simulated user behaviors to supplement
the limited amount of real user experience. In
DDQ, real user experiences play two pivotal roles:

https://github.com/MiuLab/D3Q
https://github.com/MiuLab/D3Q
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Figure 1: Proposed D3Q for dialogue policy learning.

1) directly improve the dialogue policy via RL; 2)
improve the world model via supervised learning
to make it behave more human-like. The former
is referred to as direct reinforcement learning,
and the latter world model learning. Respectively,
the policy model is trained via real experiences
collected by interacting with real users (direct
reinforcement learning), and simulated experi-
ences collected by interacting with the learned
world model (planning or indirect reinforcement
learning).

However, the effectiveness of DDQ depends
upon the quality of simulated experiences used in
planning. As pointed out in (Peng et al., 2018),
although at the early stages of dialogue training it
is helpful to perform planning aggressively with
large amounts of simulated experiences regardless
their quality, in the late stages when the dialogue
agent has been significantly improved, low-quality
simulated experiences often hurt the performance
badly. Since there is no established method of
evaluating the world model which generates sim-
ulated experiences, Peng et al. (2018) resorts to
heuristics to mitigate the negative impact of low-
quality simulated experiments, e.g., reducing the
planning steps in the late stage of training. These
heuristics need to be tweaked empirically, thus
limit DDQ’s applicability in real-world tasks.

To improve the effectiveness of planning with-
out relying on heuristics, this paper proposes Dis-
criminative Deep Dyna-Q (D3Q), a new frame-
work inspired by generative adversarial network
(GAN) that incorporates a discriminator into the
planning process. The discriminator is trained to
differentiate simulated experiences from real user
experiences. As illustrated in Figure 1, all sim-

ulated experiences generated by the world model
need to be judged by the discriminator, only the
high-quality ones, which cannot be easily detected
by the discriminator as being simulated, are used
for planning. During the course of dialogue train-
ing, both the world model and discriminator are
refined using the real experiences. So, the quality
threshold held by the discriminator goes up with
the world model and dialogue agent, especially in
the late stage of training.

By employing the world model for planning and
a discriminator for controlling the quality of simu-
lated experiences, the proposed D3Q framework
can be viewed as a model-based RL approach,
which is generic and can be easily extended to
other RL problems. In contrast, most model-based
RL methods (Tamar et al., 2016; Silver et al.,
2016; Gu et al., 2016; Racanière et al., 2017) are
developed for simulation-based, synthetic prob-
lems (e.g., games), not for real-world problems.
In summary, our main contributions in this work
are two-fold:
• The proposed Discriminative Deep Dyna-Q

approach is capable of controlling the qual-
ity of simulated experiences generated by the
world model in the planning phase, which
enables effective and robust dialogue policy
learning.
• The proposed model is verified by experi-

ments including simulation, human evalua-
tion, and domain-extension settings, where
all results show better sample efficiency over
the DDQ baselines.

2 Discriminative Deep Dyna-Q (D3Q)

As illustrated in Figure 2, the D3Q frame-
work consists of six modules: (1) an LSTM-
based natural language understanding (NLU)
module (Hakkani-Tür et al., 2016) for identifying
user intents and extracting associated slots; (2) a
state tracker (Mrkšić et al., 2017) for tracking dia-
logue states; (3) a dialogue policy that selects next
action based on the current state; (4) a model-
based natural language generation (NLG) mod-
ule for generating natural language response (Wen
et al., 2015); (5) a world model for generating sim-
ulated user actions and simulated rewards; and (6)
an RNN-based discriminator for controlling the
quality of simulated experience. Note that the
controlled planning phase is realized through the
world model and the discriminator, which are not
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Figure 2: Illustration of the proposed D3Q dialogue
system framework.

included in traditional framework of dialogue sys-
tems.

Figure 1 illustrates the whole process: start-
ing with an initial dialogue policy and an initial
world model (both are trained with pre-collected
human conversational data), D3Q training con-
sists of four stages: (1) direct reinforcement learn-
ing: the agent interacts with real users, collects
real experiences and improves dialogue policy;
(2) world model learning: the world model is
learned and refined using real experience; (3) dis-
criminator learning: the discriminator is learned
and refined to differentiate simulated experience
from real experience; and (4) controlled planning:
the agent improves the dialogue policy using the
high-quality simulated experience generated by
the world model and the discriminator.

2.1 Direct Reinforcement Learning

In this stage, we use the vanilla deep Q-network
(DQN) method (Mnih et al., 2015) to learn the di-
alogue policy based on real experience. We con-
sider task-completion dialogue as a Markov De-
cision Process (MDP), where the agent interacts
with a user through a sequence of actions to ac-
complish a specific user goal.

At each step, the agent observes the dialogue
state s, and chooses an action a to execute, us-
ing an ε-greedy policy that selects a random action
with probability ε or otherwise follows the greedy
policy a = argmaxa′Q(s, a′; θQ). Q(s, a; θQ)
which is the approximated value function, imple-
mented as a Multi-Layer Perceptron (MLP) pa-
rameterized by θQ. The agent then receives re-
ward r, observes next user response, and updates

the state to s′. Finally, we store the experience tu-
ple (s, a, r, s′) in the replay buffer Bu. This cycle
continues until the dialogue terminates.

We improve the value function Q(s, a; θQ) by
adjusting θQ to minimize the mean-squared loss
function as follows:

L(θQ) = E(s,a,r,s′)∼Bu [(yi −Q(s, a; θQ))
2],

yi = r + γmax
a′

Q′(s′, a′; θQ′), (1)

where γ ∈ [0, 1] is a discount factor, and Q′(.)
is the target value function that is only periodi-
cally updated (i.e., fixed-target). The dialogue pol-
icy can be optimized through ∇θQL(θQ) by mini-
batch deep Q-learning.

2.2 World Model Learning
To enable planning, we use a world model to gen-
erate simulated experiences that can be used to
improve dialogue policy. In each turn of a dia-
logue, the world model takes the current dialogue
state s and the last system action a (represented
as an one-hot vector) as the input, and generates
the corresponding user response o, reward r, and
a binary variable t (indicating if the dialogue ter-
minates). The world model G(s, a; θG) is trained
using a multi-task deep neural network (Liu et al.,
2015) to generate the simulated experiences. The
model contains two classification tasks for sim-
ulating user responses o and generating terminal
signals t, and one regression task for generating
the reward r. The lower encoding layers are shared
across all three tasks, while the upper layers are
task-specific. G(s, a; θG) is optimized to mimic
human behaviors by leveraging real experiences
in the replay buffer Bu. The model architecture
is illustrated in the left part of Figure 3.

h = tanh(Wh(s, a) + bh),

r = Wrh+ br,

o = softmax(Wah+ ba),

t = sigmoid(Wth+ bt),

where (s, a) is the concatenation of s and a, and
all W and b are weight matrices and bias vectors,
respectively.

2.3 Discriminator Learning
The discriminator, denoted by D, is used to differ-
entiate simulated experience from real experience.
D is a neural network model with its architecture
illustrated in the right part of Figure 3. D employs
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Figure 3: The model architectures of the world model and the discriminator for controlled planning.

an LSTM to encode a dialogue as a feature vec-
tor, and a Multi-Layer Perceptron (MLP) to map
the vector to a probability indicating whether the
dialogue looks like being generated by real users.
D is trained using the simulated experience gen-

erated by the world modelG and the collected real
experience x. We use the objective function as

Ereal[logD(x)]+Esimu[log(1−D(G(.)))]. (2)

Practically, we use the mini-batch training and the
objective function can be rewritten as

1

m

m∑
i=1

[logD(x(i)) + log(1−D(G(.)(i)))], (3)

where m represents the batch size.

2.4 Controlled Planning
In this stage, we apply the world model G and
the discriminator D to generate high-quality sim-
ulated experience to improve dialogue policy. The
D3Q method uses three replay buffers, Bu for
storing real experience, Bs for simulated experi-
ence generated byG, andBh for high-quality sim-
ulated experience generated by G and D. Learn-
ing and planning are implemented by the same
DQN algorithm, operating on real experience in
Bu for learning and on simulated experience in
Bh for planning. Here we only describe how the
high-quality simulated experience is generated.

At the beginning of each dialogue session, we
uniformly draw a user goal (C,R) (Schatzmann
et al., 2007), where C is a set of constraints
and R is a set of requests. For example, in
movie-ticket booking dialogue, constraints are the

slots with specified values, such as the name, the
date of the movie and the number of tickets to
buy. And requests can contain slots which the
user plans to acquire the values for, such as the
start time of the movie. The first user action
o1 can be either a request or an inform di-
alogue act. A request dialogue act consists of
a request slot, multiple constraint slots and the
corresponding values, uniformly sampled from
R and C. For example, request(theater;
moviename=avergers3). An inform dia-
logue act contains constraint-slots only. Semantic
frames can also be transformed into natural lan-
guage via NLG component, e.g., “which theater
will play the movie avergers3?”

For each dialogue episode with a sampled
user goal, the agent interacts with world model
G(s, a; θG) to generate a simulated dialogue ses-
sion, which is a sequence of simulated experi-
ence tuples (s, a, r, s′). We always store the G-
generated session in Bs, but only store it in Bh if
it is selected by discriminator D. We repeat the
process until K simulated dialogue sessions are
added in Bh, where K is a pre-defined planning
step size. This can be viewed as a sampling pro-
cess. In theory if the world model G is not well-
trained this process could take forever to gener-
ate K high-quality samples accepted by D. For-
tunately, this never happened in our experiments
because D is trained using the simulated experi-
ence generated by G and D is updated whenever
G is refined.

Now, we compare controlled planning in D3Q
with the planning process in the original DDQ
(Peng et al., 2018). In DDQ, after each step of di-
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Figure 4: The learning curves of DDQ(K) agents
where (K − 1) is the number of planning steps.

rect reinforcement learning, the agent improves its
policy via K steps of planning. A larger planning
step means that more simulated experiences gen-
erated by G are used for planning. Theoretically,
larger amounts of high-quality simulated experi-
ences can boost the performance of the dialogue
policy more quickly. However, the world model
by no means perfectly reflects real human behav-
ior, and the generated experiences, if of low qual-
ity, can have negative impact on dialogue policy
learning. Prior work resorts to heuristics to miti-
gate the impact. For example, Peng et al. (2018)
proposed to reduce planning steps at the late stage
of policy learning, thus forcing all DDQ agents
to converge to the same one trained with a small
number of planning steps.

Figure 4 shows the performance of DDQ agents
with different planning steps without heuristics. It
is observable that the performance is unstable, es-
pecially for larger planning steps, which indicates
that the quality of simulated experience is becom-
ing more pivotal as the number of planning steps
increases.

D3Q resolves this issue by introducing a dis-
criminator and allows only high-quality simulated
experience, judged by the discriminator, to be used
for planning. In the next section, we will show that
D3Q does not suffer from the problem of DDQ
and the D3Q training is quite stable even with
large sizes of planning steps.

3 Experiments

We evaluate D3Q on the movie-ticket booking task
with both simulated users and real users in two set-
tings: full domain and domain extension.

Full Domain & Domain Extension
request, inform, deny, confirm question,

Intent confirm answer, greeting, closing, not sure,
multiple choice, thanks, welcome

Full Domain

Slot

city, closing, date, distanceconstraints,
greeting, moviename, numberofpeople,
price, starttime, state, taskcomplete, theater,
theater chain, ticket, video format, zip

Domain Extension

Slot

city, closing, date, distanceconstraints,
greeting, moviename, numberofpeople,
price, starttime, state, taskcomplete, theater,
theater chain, ticket, video format, zip,
genre, other

Table 1: The data schema for full domain and domain
extension settings.

3.1 Dataset
Raw conversational data in a movie-ticket book-
ing scenario was collected via Amazon Mechani-
cal Turk. The dataset has been manually labeled
based on a schema defined by domain experts, as
shown in Table 1, consisting of 11 intents and 16
slots in the full domain setting, while there are
18 slots in the domain extension setting. Most
of these slots can be both “inform slots” and “re-
quest slots”, except for a few. For example, the
slot number of people is categorized as an in-
form slot but not a request slot, because arguably
the user always knows how many tickets she/he
wants. In total, the dataset contains 280 annotated
dialogues, the average length of which is approxi-
mately 11 turns.

3.2 Baselines
To verify the effectiveness of D3Q, we devel-
oped different versions of task-completion dia-
logue agents as baselines to compare with.

• A DQN agent is implemented with only di-
rect reinforcement learning in each episode.

• The DQN(K) has K times more real expe-
riences than the DQN agent. The perfor-
mance of DQN(K) can be viewed as the up-
per bound of DDQ(K) and D3Q(K) with the
same number of planning steps (K − 1), as
these models have the same training settings
and the same amount of training samples dur-
ing the entire learning process.

• The DDQ(K) agents are learned with an ini-
tial world model pre-trained on human con-
versational data, with (K − 1) as the number
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of planning steps. These agents store the sim-
ulated experience without being judged by
the discriminator.

Proposed D3Q

• The D3Q(K) agents are learned through the
process described in Section 2.4.

• The D3Q(K, fixed θD) agents are learned as
described in Section 2.4 without training dis-
criminator. The D3Q(K, fixed θD) agents are
only evaluated in the simulation setting.

3.3 Implementation
Settings and Hyper-parameters ε-greedy is al-
ways applied for exploration. We set the discount
factor γ = 0.9. The buffer size of Bu and Bh is
set to 2000 and 2000 ×K planning steps, respec-
tively. The batch size is 16, and the learning rate is
0.001. To prevent gradient explosion, we applied
gradient clipping on all the model parameters to
maximum norm = 1. All the NN models are ran-
domly initialized. The high-quality simulated ex-
perience buffer Bh and the simulated experience
buffer Bs are initialized as empty. The target net-
work is updated at the beginning of each training
episode. The optimizer for all the neural networks
is RMSProp (Hinton et al., 2012). The maximum
length of a simulated dialogue is 40. If exceed-
ing the maximum length, the dialogue fails. To
make dialogue training efficient, we also applied a
variant of imitation learning, called Reply Buffer
Spiking (RBS) (Lipton et al., 2016), by building a
simple and straightforward rule-based agent based
on human conversational dataset. We then pre-
filled the real experience replay buffer Bu with
experiences of 50 dialogues, before training for all
the variants of models. The batch size for collect-
ing experiences is 10, which means if the running
agent is DDQ/D3Q(K), 10 real experience tuples
and 10 × (K − 1) simulated experience tuples are
stored into the buffers at every episode.

Agents For all the models (DQN, DDQ, and
D3Q) and their variants, the value networks Q(.)
are MLPs with one hidden layer of size 80 and
ReLU activation.

World Model For all the models (DDQ and
D3Q) and their variants, the world models M(.)
are MLPs with one shared hidden layer of size
160, hyperbolic-tangent activation, and one en-
coding layer of hidden size 80 for each state and
action input.
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Figure 5: The learning curves of agents (DQN, DDQ,
and D3Q) under the full domain setting.

Discriminator In the proposed D3Q frame-
work, the LSTM cell is utilized, the hidden size
is 128. The encoding layer for the current state
and output layer are MLPs with single hidden
layer of size 80. The threshold interval is set
to range between 0.45 and 0.55, i.e., only when
0.45 ≤ D(x) ≤ 0.55 that x would be stored into
the buffer Bh.

3.4 Simulation Evaluation

In this setting, the dialogue agents are optimized
by interacting with the user simulators instead of
with real users. In another word, the world model
is trained to mimic user simulators. In spite of
the discrepancy between simulators and real users,
this setting endows us with the flexibility to per-
form a detailed analysis of models without much
cost, and to reproduce experimental results easily.

User Simulator We used an open-sourced task-
oriented user simulator (Li et al., 2016) in our
simulated evaluation experiments (Appendix A for
more details). The simulator provides the agent
with a simulated user response in each dialogue
turn along with a reward signal at the end of the
dialogue. A dialogue is considered successful if
and only if a movie ticket is booked successfully,
and the information provided by the agent satisfies
all the constraints of the sampled user goal. At the
end of each dialogue, the agent receives a positive
reward 2 ∗L for success, or a negative reward −L
for failure, where L is the maximum number of
turns in each dialogue, and is set to 40 in our ex-
periments. Furthermore, in each turn, a reward−1
is provided to encourage shorter dialogues.
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Agent Epoch = 100 Epoch = 200 Epoch = 300
Success Reward Turns Success Reward Turns Success Reward Turns

DQN .4467 2.993 23.21 .7000 36.08 17.84 .7867 48.45 13.91
DDQ(5) .5467 16.57 20.07 .7133 39.23 14.73 .8067 50.73 14.13
DDQ(5, rand-init θG) .6067 23.55 20.49 .6267 26.30 19.80 .6667 32.92 16.16
DDQ(5, fixed θG) .5867 20.62 21.56 .1667 -33.71 29.41 .2267 -22.68 21.76
D3Q(5) .7467 43.59 14.03 .6800 34.64 15.92 .7200 40.85 13.11
D3Q(5, fixed θD) .6800 33.86 17.48 .7000 36.57 16.85 .6933 35.67 17.06
DQN(5) .7400 42.19 15.23 .8533 57.76 11.28 .7667 46.56 12.88
DDQ(10) .5733 24.00 11.60 .5533 19.89 15.01 .4800 10.04 17.12
DDQ(10, rand-init θG) .5000 12.79 16.41 .5333 17.71 14.57 .6000 24.98 16.04
DDQ(10, fixed θG) .3467 -10.25 25.69 .2400 -23.38 26.36 .0000 -55.53 33.07
D3Q(10) .6333 28.99 16.01 .7000 37.24 15.52 .6667 33.09 15.83
D3Q(10, fixed θD) .7133 36.36 20.48 .8400 54.87 20.48 .7400 42.89 13.81
DQN(10) .8333 55.5 11.00 .7733 47.99 11.61 .7733 47.68 12.24

Table 2: Results of different agents at training epoch = {100, 200, 300}. Each number is averaged over 3 runs,
each run tested on 50 dialogues. (Success: success rate, Reward: Average Reward, Turns: Average Turns)
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Figure 6: The learning curves of D3Q(K) agents which
(K-1) is the number of planning steps (K = 2, 3, 5, 10,
15).

Full Domain The learning curves of the models
in the full domain setting are depicted in the fig-
ure 5. The results show that the proposed D3Q
agent (the pink curve) significantly outperforms
the baselines DQN and DDQ(5), and has simi-
lar training efficiency to DQN(5). Note that here
the planning steps of D3Q is 4, which means
D3Q (pink) and DDQ(5) (purple) use the same
amount of training samples (both real and sim-
ulated experiences) to update the agent through-
out the whole training process. The difference be-
tween these two agents is that D3Q employs a dis-
criminator as a quality judge. The experimental
result shows that our proposed framework could
boost the learning efficiency even without any pre-
training on the discriminator. Furthermore, D3Q
(pink) uses the same amount of training samples
as DQN(5) (green), while the proposed model uses
only 20% of real experience from human. The ef-
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Figure 7: The learning curves of D3Q, DDQ(5),
DDQ(5) (Peng et al., 2018), and D3Q fixed θD agents.

ficacy and feasibility of D3Q is hereby justly veri-
fied.

As mentioned in the previous section, a large
number of planning steps means leveraging a large
amount of simulated experience to train the agents.
The experimental result (Figure 4) shows that the
DDQ agents are highly sensitive to the quality of
simulated experience. In contrast, the proposed
D3Q framework demonstrates robustness to the
number of planning steps (Figure 6). Figure 7
shows that D3Q also outperforms DDQ original
setting (Peng et al., 2018) and D3Q without train-
ing discriminator. The performance detail includ-
ing success rate, reward, an number of turns is
shown in Table 2. From the table, with fewer sim-
ulated experiences, the difference between DDQ
and D3Q may not be significant, where DDQ
agents achieve about 50%-60% success rate and
D3Q agents achieve higher than 68% success rate
after 100 epochs. However, when the number of
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Figure 8: The learning curves of agents (DQN, DDQ,
and D3Q) under the domain extension setting.

planning steps increases, more fake experiences
significantly degrade the performance for DDQ
agents, where DDQ(10, fixed θG) suffers from
bad simulated experiences after 300 epochs and
achieves 0% success rate.

Domain Extension In the domain extension
experiments, more complicated user goals are
adopted. Moreover, we narrow down the action
space into a small subspace instead of that used in
full-domain setting, and gradually introduce more
complex user goals and expand the action space as
the training proceeds. Specifically, we start from a
set of necessary slots and actions to accomplish
most of the user goals, and then extend the ac-
tion space and complexity of user goals once every
20 epoch (after epoch 50). Note that the domain
will keep extending and become full-domain after
epoch 130. Such experimental setting makes the
training environment more complicated and unsta-
ble than the previous full-domain one.

The results summarized in Figure 8 show that
D3Q significantly outperforms the baseline meth-
ods, demonstrating its robustness. Furthermore,
D3Q shows remarkable learning efficiency while
extending the domain, which even outperforms
DQN(5). A potential reason might be that the
world model could improve exploration in such
unstable and noisy environment.

3.5 Human Evaluation

In the human evaluation experiments, real users
interact with different models without knowing
which agent is behind the system. At the begin-
ning of each dialogue session, one of the agents
was randomly picked to converse with the user.
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Figure 9: The human evaluation results of D3Q,
DDQ(5), and D3Q in the full domain setting, the num-
ber of test dialogues indicated on each bar, and the p-
values from a two-sided permutation test (difference in
mean is significant with p < 0.05).
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Figure 10: The human evaluation results of DQN,
DDQ(5), and D3Q in the domain extension setting, the
number of test dialogues indicated on each bar. The
prefix ’b-’ implies that the trained models are picked
before the environment extends to full domain, while
the prefix ’a-’ indicates that the trained models are
picked after the environment becomes full domain (dif-
ference in mean is significant with p < 0.05).

The user was instructed to converse with the agent
to complete a task given a user goal sampled from
the corpus. The user can abandon the task and ter-
minate the dialogue at any time, if she or he be-
lieves that the dialogue was unlikely to succeed,
or simply because the dialogue drags on for too
many turns. In such cases, the dialogue session is
considered as failure.

Full Domain Three agents (DQN, DDQ(5), and
D3Q) trained in the full domain setting (Figure 5)
at epoch 100 are selected for testing. As illustrated
in Figure 9, the results of human evaluation are
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consistent with those in the simulation evaluation
(Section 3.4), and the proposed D3Q significantly
outperforms other agents.

Domain Extension To test the adaptation capa-
bility of the agents to the complicated, dynam-
ically changing environment, we selected three
trained agents (DQN, DDQ(5), and D3Q) at epoch
100 before the environment extends to full do-
main, and another three agents trained at epoch
200 after the environment becomes full domain.
Figure 10 shows that the results are consistent with
those in the simulation evaluation (Figure 8), and
the proposed D3Q significantly outperforms other
agents in both stages.

4 Conclusions

This paper proposes a new framework, Discrimi-
native Deep Dyna-Q (D3Q), for task-completion
dialogue policy learning. With a discriminator as
judge, the proposed approach is capable of con-
trolling the quality of simulated experience gener-
ated in the planning phase, which enables efficient
and robust dialogue policy learning. Furthermore,
D3Q can be viewed as a generic model-based RL
approach easily-extensible to other RL problems.

We validate the D3Q-trained dialogue agent on
a movie-ticket-booking task in the simulation, hu-
man evaluation, and domain-extension settings.
Our results show that the D3Q agent significantly
outperforms the agents trained using other state-
of-the-art methods including DQN and DDQ.
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A User Simulator

In the task-completion dialogue setting, the entire
conversation is around a user goal implicitly, but
the agent knows nothing about the user goal ex-
plicitly and its objective is to help the user to ac-
complish this goal. Generally, the definition of
user goal contains two parts:
• inform slots contain a number of slot-value

pairs which serve as constraints from the user.
• request slots contain a set of slots that user

has no information about the values, but
wants to get the values from the agent dur-
ing the conversation. ticket is a default slot
which always appears in the request slots
part of user goal.

To make the user goal more realistic, we add
some constraints in the user goal: slots are split
into two groups. Some of slots must appear in the
user goal, we called these elements as Required
slots. In the movie-booking scenario, it includes
moviename, theater, starttime, date, num-
berofpeople; the rest slots are Optional slots, for
example, theater chain, video format etc.
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We generated the user goals from the labeled
dataset using two mechanisms. One mechanism
is to extract all the slots (known and unknown)
from the first user turns (excluding the greeting
user turn) in the data, since usually the first turn
contains some or all the required information from
user. The other mechanism is to extract all the
slots (known and unknown) that first appear in all
the user turns, and then aggregate them into one
user goal. We dump these user goals into a file as
the user-goal database. Every time when running a
dialogue, we randomly sample one user goal from
this user goal database.


