@inproceedings{staliunaite-etal-2018-getting,
title = "Getting to {``}Hearer-old{''}: Charting Referring Expressions Across Time",
author = "Stali{\=u}nait{\.e}, Ieva and
Rohde, Hannah and
Webber, Bonnie and
Louis, Annie",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1466",
doi = "10.18653/v1/D18-1466",
pages = "4350--4359",
abstract = "When a reader is first introduced to an entity, its referring expression must describe the entity. For entities that are widely known, a single word or phrase often suffices. This paper presents the first study of how expressions that refer to the same entity develop over time. We track thousands of person and organization entities over 20 years of New York Times (NYT). As entities move from hearer-new (first introduction to the NYT audience) to hearer-old (common knowledge) status, we show empirically that the referring expressions along this trajectory depend on the type of the entity, and exhibit linguistic properties related to becoming common knowledge (e.g., shorter length, less use of appositives, more definiteness). These properties can also be used to build a model to predict how long it will take for an entity to reach hearer-old status. Our results reach 10-30{\%} absolute improvement over a majority-class baseline.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="staliunaite-etal-2018-getting">
<titleInfo>
<title>Getting to “Hearer-old”: Charting Referring Expressions Across Time</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ieva</namePart>
<namePart type="family">Staliūnaitė</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannah</namePart>
<namePart type="family">Rohde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When a reader is first introduced to an entity, its referring expression must describe the entity. For entities that are widely known, a single word or phrase often suffices. This paper presents the first study of how expressions that refer to the same entity develop over time. We track thousands of person and organization entities over 20 years of New York Times (NYT). As entities move from hearer-new (first introduction to the NYT audience) to hearer-old (common knowledge) status, we show empirically that the referring expressions along this trajectory depend on the type of the entity, and exhibit linguistic properties related to becoming common knowledge (e.g., shorter length, less use of appositives, more definiteness). These properties can also be used to build a model to predict how long it will take for an entity to reach hearer-old status. Our results reach 10-30% absolute improvement over a majority-class baseline.</abstract>
<identifier type="citekey">staliunaite-etal-2018-getting</identifier>
<identifier type="doi">10.18653/v1/D18-1466</identifier>
<location>
<url>https://aclanthology.org/D18-1466</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4350</start>
<end>4359</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Getting to “Hearer-old”: Charting Referring Expressions Across Time
%A Staliūnaitė, Ieva
%A Rohde, Hannah
%A Webber, Bonnie
%A Louis, Annie
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F staliunaite-etal-2018-getting
%X When a reader is first introduced to an entity, its referring expression must describe the entity. For entities that are widely known, a single word or phrase often suffices. This paper presents the first study of how expressions that refer to the same entity develop over time. We track thousands of person and organization entities over 20 years of New York Times (NYT). As entities move from hearer-new (first introduction to the NYT audience) to hearer-old (common knowledge) status, we show empirically that the referring expressions along this trajectory depend on the type of the entity, and exhibit linguistic properties related to becoming common knowledge (e.g., shorter length, less use of appositives, more definiteness). These properties can also be used to build a model to predict how long it will take for an entity to reach hearer-old status. Our results reach 10-30% absolute improvement over a majority-class baseline.
%R 10.18653/v1/D18-1466
%U https://aclanthology.org/D18-1466
%U https://doi.org/10.18653/v1/D18-1466
%P 4350-4359
Markdown (Informal)
[Getting to “Hearer-old”: Charting Referring Expressions Across Time](https://aclanthology.org/D18-1466) (Staliūnaitė et al., EMNLP 2018)
ACL