@inproceedings{van-schijndel-linzen-2018-neural,
title = "A Neural Model of Adaptation in Reading",
author = "van Schijndel, Marten and
Linzen, Tal",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1499/",
doi = "10.18653/v1/D18-1499",
pages = "4704--4710",
abstract = "It has been argued that humans rapidly adapt their lexical and syntactic expectations to match the statistics of the current linguistic context. We provide further support to this claim by showing that the addition of a simple adaptation mechanism to a neural language model improves our predictions of human reading times compared to a non-adaptive model. We analyze the performance of the model on controlled materials from psycholinguistic experiments and show that it adapts not only to lexical items but also to abstract syntactic structures."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-schijndel-linzen-2018-neural">
<titleInfo>
<title>A Neural Model of Adaptation in Reading</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marten</namePart>
<namePart type="family">van Schijndel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>It has been argued that humans rapidly adapt their lexical and syntactic expectations to match the statistics of the current linguistic context. We provide further support to this claim by showing that the addition of a simple adaptation mechanism to a neural language model improves our predictions of human reading times compared to a non-adaptive model. We analyze the performance of the model on controlled materials from psycholinguistic experiments and show that it adapts not only to lexical items but also to abstract syntactic structures.</abstract>
<identifier type="citekey">van-schijndel-linzen-2018-neural</identifier>
<identifier type="doi">10.18653/v1/D18-1499</identifier>
<location>
<url>https://aclanthology.org/D18-1499/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4704</start>
<end>4710</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Neural Model of Adaptation in Reading
%A van Schijndel, Marten
%A Linzen, Tal
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F van-schijndel-linzen-2018-neural
%X It has been argued that humans rapidly adapt their lexical and syntactic expectations to match the statistics of the current linguistic context. We provide further support to this claim by showing that the addition of a simple adaptation mechanism to a neural language model improves our predictions of human reading times compared to a non-adaptive model. We analyze the performance of the model on controlled materials from psycholinguistic experiments and show that it adapts not only to lexical items but also to abstract syntactic structures.
%R 10.18653/v1/D18-1499
%U https://aclanthology.org/D18-1499/
%U https://doi.org/10.18653/v1/D18-1499
%P 4704-4710
Markdown (Informal)
[A Neural Model of Adaptation in Reading](https://aclanthology.org/D18-1499/) (van Schijndel & Linzen, EMNLP 2018)
ACL
- Marten van Schijndel and Tal Linzen. 2018. A Neural Model of Adaptation in Reading. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4704–4710, Brussels, Belgium. Association for Computational Linguistics.