@inproceedings{abdou-etal-2018-learn,
title = "What can we learn from Semantic Tagging?",
author = "Abdou, Mostafa and
Kulmizev, Artur and
Ravishankar, Vinit and
Abzianidze, Lasha and
Bos, Johan",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1526/",
doi = "10.18653/v1/D18-1526",
pages = "4881--4889",
abstract = "We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where negative transfer between tasks is less likely. Our findings show considerable improvements for all tasks, particularly in the learning what to share setting which shows consistent gains across all tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="abdou-etal-2018-learn">
<titleInfo>
<title>What can we learn from Semantic Tagging?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mostafa</namePart>
<namePart type="family">Abdou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Artur</namePart>
<namePart type="family">Kulmizev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinit</namePart>
<namePart type="family">Ravishankar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lasha</namePart>
<namePart type="family">Abzianidze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johan</namePart>
<namePart type="family">Bos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where negative transfer between tasks is less likely. Our findings show considerable improvements for all tasks, particularly in the learning what to share setting which shows consistent gains across all tasks.</abstract>
<identifier type="citekey">abdou-etal-2018-learn</identifier>
<identifier type="doi">10.18653/v1/D18-1526</identifier>
<location>
<url>https://aclanthology.org/D18-1526/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4881</start>
<end>4889</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What can we learn from Semantic Tagging?
%A Abdou, Mostafa
%A Kulmizev, Artur
%A Ravishankar, Vinit
%A Abzianidze, Lasha
%A Bos, Johan
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F abdou-etal-2018-learn
%X We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where negative transfer between tasks is less likely. Our findings show considerable improvements for all tasks, particularly in the learning what to share setting which shows consistent gains across all tasks.
%R 10.18653/v1/D18-1526
%U https://aclanthology.org/D18-1526/
%U https://doi.org/10.18653/v1/D18-1526
%P 4881-4889
Markdown (Informal)
[What can we learn from Semantic Tagging?](https://aclanthology.org/D18-1526/) (Abdou et al., EMNLP 2018)
ACL
- Mostafa Abdou, Artur Kulmizev, Vinit Ravishankar, Lasha Abzianidze, and Johan Bos. 2018. What can we learn from Semantic Tagging?. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4881–4889, Brussels, Belgium. Association for Computational Linguistics.