@inproceedings{ferguson-etal-2018-identifying,
title = "Identifying Domain Adjacent Instances for Semantic Parsers",
author = "Ferguson, James and
Christensen, Janara and
Li, Edward and
Gonz{\`a}lez, Edgar",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1539",
doi = "10.18653/v1/D18-1539",
pages = "4964--4969",
abstract = "When the semantics of a sentence are not representable in a semantic parser{'}s output schema, parsing will inevitably fail. Detection of these instances is commonly treated as an out-of-domain classification problem. However, there is also a more subtle scenario in which the test data is drawn from the same domain. In addition to formalizing this problem of domain-adjacency, we present a comparison of various baselines that could be used to solve it. We also propose a new simple sentence representation that emphasizes words which are unexpected. This approach improves the performance of a downstream semantic parser run on in-domain and domain-adjacent instances.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ferguson-etal-2018-identifying">
<titleInfo>
<title>Identifying Domain Adjacent Instances for Semantic Parsers</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Ferguson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janara</namePart>
<namePart type="family">Christensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edgar</namePart>
<namePart type="family">Gonzàlez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When the semantics of a sentence are not representable in a semantic parser’s output schema, parsing will inevitably fail. Detection of these instances is commonly treated as an out-of-domain classification problem. However, there is also a more subtle scenario in which the test data is drawn from the same domain. In addition to formalizing this problem of domain-adjacency, we present a comparison of various baselines that could be used to solve it. We also propose a new simple sentence representation that emphasizes words which are unexpected. This approach improves the performance of a downstream semantic parser run on in-domain and domain-adjacent instances.</abstract>
<identifier type="citekey">ferguson-etal-2018-identifying</identifier>
<identifier type="doi">10.18653/v1/D18-1539</identifier>
<location>
<url>https://aclanthology.org/D18-1539</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4964</start>
<end>4969</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Domain Adjacent Instances for Semantic Parsers
%A Ferguson, James
%A Christensen, Janara
%A Li, Edward
%A Gonzàlez, Edgar
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F ferguson-etal-2018-identifying
%X When the semantics of a sentence are not representable in a semantic parser’s output schema, parsing will inevitably fail. Detection of these instances is commonly treated as an out-of-domain classification problem. However, there is also a more subtle scenario in which the test data is drawn from the same domain. In addition to formalizing this problem of domain-adjacency, we present a comparison of various baselines that could be used to solve it. We also propose a new simple sentence representation that emphasizes words which are unexpected. This approach improves the performance of a downstream semantic parser run on in-domain and domain-adjacent instances.
%R 10.18653/v1/D18-1539
%U https://aclanthology.org/D18-1539
%U https://doi.org/10.18653/v1/D18-1539
%P 4964-4969
Markdown (Informal)
[Identifying Domain Adjacent Instances for Semantic Parsers](https://aclanthology.org/D18-1539) (Ferguson et al., EMNLP 2018)
ACL
- James Ferguson, Janara Christensen, Edward Li, and Edgar Gonzàlez. 2018. Identifying Domain Adjacent Instances for Semantic Parsers. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4964–4969, Brussels, Belgium. Association for Computational Linguistics.