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Abstract

When the semantics of a sentence are not
representable in a semantic parser’s output
schema, parsing will inevitably fail. Detection
of these instances is commonly treated as an
out-of-domain classification problem. How-
ever, there is also a more subtle scenario in
which the test data is drawn from the same
domain. In addition to formalizing this prob-
lem of domain-adjacency, we present a com-
parison of various baselines that could be used
to solve it. We also propose a new simple
sentence representation that emphasizes words
which are unexpected. This approach im-
proves the performance of a downstream se-
mantic parser run on in-domain and domain-
adjacent instances.

1 Introduction

Semantic parsers map text to logical forms, which
can then be used by downstream components to
fulfill an action. Consider, for example, a system
for booking air travel, in which a user provides
natural language input, and a downstream subsys-
tem is able to make or cancel flight reservations.
Users of the system typically have a general under-
standing of its purpose, so the input will revolve
around the correct topic of air travel. However,
they are unlikely to know the limits of the system’s
functionality, and may provide inputs for which
the expected action is beyond its capabilities, such
as asking to change seats on a flight reservation.
Because the logical schema is designed with ful-
fillment in mind, no logical form can capture the
semantics of these sentences, making it impossi-
ble for the parser to generate a correct parse. Any
output the parser generates will cause unintended
actions to be executed downstream. For example,
asking to change seats might be misparsed and
executed as changing flights. Instead, the parser
should identify that this input is beyond its scope

Air Travel Domain
Example In-Domain Predicates

buyT icket Buy ticket LGA to SFO on 3/12
flightStatus What’s the status of my SF flight?
switchF light Change it to the 8am SFO flight
cancelF light Cancel my flight to SFO
awardTravel I want to fly to SFO with miles

Example Domain-Adjacent Predicates
changeSeat Change my seat to 23A

milesUpgrade Upgrade my flight with my miles
arrivalGate Gate that my SFO flight arrives at

mileageStatus What’s my miles status
Example Out-of-Domain Predicates

transferMoney Transfer $200 to checking
addT imer Add a timer for 3 minutes

restaurantSearch Thai restaurants in SF
scheduleMeeting Set up a 9am meeting with Amy

Figure 1: In this example, an air travel semantic parser
is trained on data containing in-domain predicates. A
test instance cannot be parsed correctly if it contains
any domain-adjacent or out-of-domain predicates.

so the condition can be handled.1 In this paper, we
formalize this pervasive problem, which we call
domain-adjacent instance identification.

While this task is similar to that of identifying
out-of-domain input instances (e.g., banking with
respect to air travel), it is much more subtle — the
instances come from roughly the same domain as
the parser’s training examples, and thus use very
similar language. Domain adjacency is a property
with respect to the parser’s output schema, inde-
pendent of the data used to train it.

In this paper, we formalize this task, and pro-
pose a simple approach for representing sen-
tences in which words are weighted by how likely
they are to differentiate between in-domain and
domain-adjacent instances. Note that while this
approach can also be applied to out-of-domain

1In the final page of the paper, we suggest a few imme-
diate downstream system behaviors when a domain-adjacent
instance is identified, but others have investigated the related
problem of teaching the system new behavior (Azaria et al.,
2016).
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instances, in this paper we are interested in its
performance on domain-adjacent instances. We
describe an evaluation framework for this new
task and, finally, evaluate our proposed method
against a set of baselines, comparing performance
on the domain-adjacent classification problem and
a downstream semantic parsing task.

2 Problem Setting

A semantic parser can be seen as a function ϕ that
maps sentences x in a natural language L to log-
ical forms y ∈ Y . Assuming the existence of an
oracle parser ϕ̂, the problem we propose in this pa-
per is that of determining, for a given test instance
x, whether it belongs to the domain Φ of ϕ̂, i.e., if
its semantics can be encoded in the schema Y .

In real-world usage, the input sentences x will
be generated by a human user, who associates the
capabilities of the parser to a particular topic (e.g.,
air travel). Thus most of the x ∈ L \Φ will share
topic with the x̂ ∈ Φ. Because of the similarity
between these x and x̂, we call this task identifica-
tion of domain-adjacent instances.

3 Approach

Our goal is to identify input instances whose se-
mantics are not representable in the parser’s out-
put schema, and we assume only an in-domain
dataset is available at training time. Our approach
is based on determining similarity to these training
instances. We split the task in two parts: 1) encode
the sentences to a compact representation that pre-
serves the needed information, and 2) given these
representations, identify which sentences are so
dissimilar that they are unlikely to be parseable
with any schema that covers the training set.

3.1 Sentence Representation

Among recent work in distributional semantics,
averaging the word vectors to represent a sentence
(Wieting et al., 2016; Adi et al., 2017) has proven
to be a simple and robust approach. However, we
have an intuition that words which are unexpected
in their context given the training data may be a
strong signal that an instance is domain-adjacent.
To incorporate this signal, we propose a weighted
average, in which the weight corresponds to how
unexpected the word is in its context. For exam-
ple, given in-domain predicates from Figure 1, in
the domain-adjacent sentence “Upgrade my flight

to SFO with my miles”, upgrade should receive a
much higher weight than flight or SFO.

Our weighting scheme is as follows: We use
the cosine distance between the expected (v̄i) and
the actual (v̂i) domain-specific word embedding at
a given position (i) in a sentence to compute its
weight: wi = 1 − cos(v̄i, v̂i). The expected word
embedding is computed using the context embed-
dings, v̄i =

∑i+c
j=i−c,j 6=i v̂j , where v̂j is a domain-

specific word embedding, in a window of size c
around position i. Intuitively, wi represents how
surprising the word is in the context.

Since our training set is too small to di-
rectly learn domain-specific embeddings, we
learn a mapping from general pre-trained em-
beddings. We train a continuous bag-of-words
model (Mikolov et al., 2013) in which we pass
pre-trained embeddings (vi) instead of 1-hot vec-
tors, as input to the embedding layer. The layer
thus learns a mapping from pre-trained to domain-
specific embeddings (v̂i). We use this mapping to
compute new embeddings for words that are miss-
ing from the training set. Only words that do not
have pre-trained embeddings are ignored.

Finally, for a sentence with n words, we take the
weighted average of the pre-trained embeddings of
the words in the sentence, using the weights from
above: S = (

∑n
i=1wivi) / (

∑n
i=1wi).

This approach assigns high weight to words that
differ significantly from what is expected based
on the training data. By combining these weights
with the pre-trained word embeddings, we allow
the model to incorporate external information, im-
proving generalization beyond the training set.

3.2 Domain-Adjacent Model

A number of techniques can be applied to pre-
dict whether a sentence is domain-adjacent from
its continuous representation. Of the methods we
tried, we found k-nearest neighbors (Angiulli and
Pizzuti, 2002) to perform best: to classify a sen-
tence, we calculate the average cosine distance be-
tween its embedding and its k nearest neighbors
in the training data, and label it domain-adjacent
if this value is greater than some threshold. This
simpler model relies more heavily on the external
information brought in by pre-trained word em-
beddings, while more complex models seem to
overfit to the training data.
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Basketball numGamesPlayed
Blocks length

Calendar startTime
Housing size

Publications venue
Recipes preparationTime

Restaurants starRating
Social educationStartDate,

employmentEndDate

Table 1: Predicates excluded from training and consid-
ered domain-adjacent. Domains have 5-20 predicates.

4 Evaluation

In this section, we introduce an evaluation frame-
work for this new task. We consider training and
test sets from a single domain, with only the lat-
ter containing domain-adjacent instances. Test in-
stances are classified individually, and we measure
performance on in-domain/domain-adjacent clas-
sification and semantic parsing.

4.1 Dataset and Semantic Parser

We simulate this setting by adapting the OVER-
NIGHT dataset (Wang et al., 2015). This dataset
is composed of queries drawn from eight do-
mains, each having a set of seven to eighteen
distinct semantic predicates. Queries consist of
a crowd-sourced textual sentence and its corre-
sponding logical form containing one or more of
these domain-specific semantic predicates.

For each domain, we select a set of predicates to
exclude from the logical schema (see Table 1), and
remove all instances containing these predicates
from the training set (since they are now domain-
adjacent). We then train a domain-adjacent model
and semantic parser on the remaining training data
and attempt to identify the domain-adjacent exam-
ples in the test data. We use the train/test splits
from Wang et al. (2015). In all experiments, we
use the SEMPRE parser (Berant et al., 2013).

4.2 Baselines

Because this is a novel task, and results are not
comparable to previous work, we report results
from a variety of baseline systems. The first
baseline, CONFIDENCE, identifies instances as
domain-adjacent if the semantic parser’s confi-
dence in its predictions is below some threshold.

The remaining baselines follow the two-part ap-
proach from Section 3. AUTOENCODER is inspi-
red by Ryu et al. (2017)’s work on identifying
out-of-domain examples. For the sentence repre-

sentation, this method uses a bi-LSTM with self-
attention, trained to predict the semantic predi-
cates, and concatenates the final hidden state from
each direction as the sentence representation. An
autoencoder is used as the domain-adjacent classi-
fier.

The remaining methods use the nearest neigh-
bor model discussed in Section 3.2. For sentence
representations, we include baselines drawn from
different neural approaches. In CBOW, we sim-
ply average the pre-trained word embeddings in
the sentence. In CNN, we train a two-layer CNN
with a final softmax layer to predict the seman-
tic predicates for a sentence. We concatenate the
mean pooling of each layer as the sentence rep-
resentation. In LSTM, we use the same sen-
tence representation as in AUTOENCODER, with
the nearest neighbor domain-adjacent model. Fi-
nally, SURPRISE is the approach presented in Sec-
tion 3.1.

4.3 Direct Evaluation

We first directly evaluate the identification of
domain-adjacent instances: Table 2 reports the
area under a receiver operating characteristic
curve (AUC) for the considered models (Fawcett,
2006). SURPRISE generally performs the best on
this evaluation; and, in general, the simpler models
tend to perform better, suggesting that more com-
plex approaches tune too much to the training data.

Qualitatively, for domains where the SURPRISE

model performs better, it places higher weight on
words we would consider important for distin-
guishing domain-adjacent sentences. For exam-
ple in “show me recipes with longer preparation
times than rice pudding” from Recipes, “longer”
and “preparation” have the highest weights. In
Social, there are two in-domain predicates (em-
ploymentStartDate and educationEndDate) which
use very similar wording to those that are domain-
adjacent, making it difficult to isolate surprising
words. The weights in this domain seem to instead
emphasize unusual wordings such as “soonest” in
“employees with the soonest finish date”.

4.3.1 Ablation Analysis
In order to determine the contribution of each
one of the components of SURPRISE, we per-
formed an ablation analysis comparing the fol-
lowing modifications of the method: CBOW, as
described above, using an unweighted average of
pre-trained embeddings; FREQUENCY, using a
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Basketball Blocks Calendar Housing Publications Recipes Restaurants Social
AUTOENCODER 0.801 0.479 0.766 0.781 0.874 0.722 0.581 0.774
CONFIDENCE 0.660 0.738 0.697 0.648 0.631 0.651 0.730 0.573

CBOW 0.743 0.782 0.662 0.910 0.884 0.670 0.911 0.675
CNN 0.916 0.654 0.862 0.792 0.908 0.505 0.840 0.813

LSTM 0.826 0.571 0.741 0.912 0.827 0.487 0.593 0.754
SURPRISE 0.755 0.827 0.817 0.933 0.978 0.758 0.941 0.545

Table 2: AUC for domain-adjacent instance identification, using KNN as the domain-adjacent model.

Basketball Blocks Calendar Housing Publications Recipes Restaurants Social
CBOW 0.743 0.782 0.662 0.910 0.884 0.670 0.911 0.675

FREQUENCY 0.656 0.703 0.771 0.884 0.887 0.667 0.834 0.591
PRETRAINED 0.612 0.636 0.512 0.819 0.842 0.526 0.858 0.538

SURPRISE 0.755 0.827 0.817 0.933 0.978 0.758 0.941 0.545

Table 3: AUC for domain-adjacent instance identification, using ablated versions of SURPRISE with KNN.

weighted average of pre-trained embeddings, with
weights based on inverse document frequency in
the training set; PRETRAINED, using the surprise
schema but with weights determined using pre-
trained embeddings; and the full SUPRISE as pre-
sented above. Each approach adds one component
(weighting, surprise-based weights, and domain-
specific embeddings) with respect to the previous
one.

The results of the experiment are shown in Ta-
ble 3. We can see that FREQUENCY performs
slightly worse than CBOW and PRETRAINED

performs even worse than that. We can conclude
that the combination of the weighting schema and
the tuned vectors is what makes SUPRISE effec-
tive.

4.4 Downstream Task Evaluation

We next evaluate how including the domain-
adjacent predictions affects the performance of a
semantic parser. In a real setting, when the se-
mantic parser is presented with domain-adjacent
input that is beyond its scope, the correct behav-
ior is to label it as such so that it can be han-
dled properly by downstream components. To
simulate this behavior, we set the gold parse for
domain-adjacent instances to be an empty parse,
and automatically assign an empty parse to any
instance that is identified as domain-adjacent. We
report accuracy of the semantic parser with 20%
domain-adjacent test data. We include two addi-
tional models: NOFILTER, in which nothing is la-
beled domain-adjacent, and ORACLE, in which all
the domain-adjacent instances are correctly iden-

tified. For each baseline requiring a threshold, we
set it such that 3% of the instances in the dev set
would be marked as domain-adjacent (intuitively,
this represents the error-tolerance of the system).

Table 4 shows the results for this experiment. In
general, the relative performance is similar to that
in the direct evaluation (e.g. SURPRISE tends to
do well on most domains, but performs poorly on
BASKETBALL and SOCIAL in particular). How-
ever, in this evaluation, misclassifying an instance
as domain-adjacent if the semantic parser would
have accurately parsed it is worse than misclassi-
fying the instance if the semantic parser could not
have accurately parsed it. For example, in SOCIAL

we can thus infer that SURPRISE is marking some
instances as domain-adjacent that would otherwise
be accurately parsed as the performance there is
actually worse than for NOFILTER.

5 Related Work

Domain-adjacency identification is a new task, but
relatively little effort has been devoted to even
the related task of identifying out-of-domain in-
stances (i.e., from completely separate domains)
for semantic parsers. Hakkani-Tur et al. (2015)
approached the problem by clustering sentences
based on shared subgraphs in their general seman-
tic parses; Ryu et al. (2017) classify sentences
with autoencoder reconstruction error.

Prior distributional semantics work to create
compact sentential representations generated spe-
cific embeddings for downstream tasks (Kalch-
brenner et al., 2014; Kim, 2014; Socher et al.,
2013). Recently, work has focused on domain-
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Basketball Blocks Calendar Housing Publications Recipes Restaurants Social
NOFILTER 0.358 0.294 0.617 0.461 0.511 0.570 0.626 0.355
ORACLE 0.558 0.494 0.817 0.661 0.711 0.770 0.826 0.555

AUTOENCODER 0.413 0.268 0.581 0.447 0.463 0.530 0.543 0.417
CONFIDENCE 0.389 0.306 0.644 0.472 0.525 0.568 0.665 0.360

CBOW 0.344 0.295 0.634 0.515 0.621 0.575 0.722 0.358
CNN 0.452 0.324 0.674 0.488 0.573 0.570 0.605 0.446

LSTM 0.385 0.314 0.622 0.495 0.581 0.547 0.612 0.363
SURPRISE 0.356 0.371 0.679 0.570 0.668 0.554 0.764 0.345

Table 4: Accuracy for a semantic parser evaluated on a test set in which 20% is domain adjacent.

independent embeddings, learned without down-
stream task supervision. Kiros et al. (2015), Hill
et al. (2016), and Kenter et al. (2016) learn rep-
resentations by predicting the surrounding sen-
tences. Wieting et al. (2016) use paraphrases as
supervision. Mu et al. (2017) represent sentences
by the low-rank subspace spanned by the embed-
dings of the words in them; Arora et al. (2017)
use a weighted average of word embeddings, with
their projection onto the first principal component
across all sentences in the corpus removed.

Another relatively sparse area of related work is
handling the domain-adjacent instances once they
have been identified. The simplest thing to do is
to return a generic error. For user-facing applica-
tions, one such message might state that the sys-
tem can’t handle that specific query. Azaria et al.
(2016) approach this problem by having the user
break down the domain-adjacent instance into a
sequence of simpler textual instructions and then
attempting to map those to known logical forms.

6 Conclusion

Identifying domain-adjacent instances is a prac-
tical issue that can improve downstream seman-
tic parsing precision, and thus provide a smoother
and more reliable user experience. In this pa-
per, we formalize this task, and introduce a novel
sentence embedding approach which outperforms
baselines. Future work includes exploring alter-
native ways of incorporating information outside
of the given training set and experimenting with
various combinations of semantic parsers and up-
stream domain-adjacency models. Another area
of future research is how the underlying system
should recover when domain-adjacent instances
are detected.
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