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Abstract

Automatic extraction of temporal information
is important for natural language understand-
ing. It involves two basic tasks: (1) Un-
derstanding time expressions that are men-
tioned explicitly in text (e.g., February 27,
1998 or tomorrow), and (2) Understanding
temporal information that is conveyed im-
plicitly via relations. This paper introduces
CogCompTime, a system that has these two
important functionalities. It incorporates the
most recent progress, achieves state-of-the-art
performance, and is publicly available.1 We
believe that this demo will provide valuable in-
sight for temporal understanding and be useful
for multiple time-aware applications.

1 Introduction

Time is an important dimension when we describe
the world because many facts are time-sensitive,
e.g., one’s place of residence, one’s employment,
or the progress of a conflict between countries.
Consequently, many applications can benefit from
temporal understanding in natural language, e.g.,
timeline construction (Do et al., 2012; Minard
et al., 2015), clinical events analysis (Jindal and
Roth, 2013; Bethard et al., 2015), question an-
swering (Llorens et al., 2015), and causality infer-
ence (Ning et al., 2018a).

Temporal understanding from natural language
requires two basic components (Verhagen et al.,
2007, 2010; UzZaman et al., 2013). The first, also
known as the Timex component, requires extract-
ing explicit time expressions in text (i.e., “Timex”)
and normalize them to a standard format. In Ex-
ample 1, the Timex is February 27, 1998 and its
normalized form is ‘1998-02-27”. Note that nor-
malization may also require a reference time for
Timexes like “tomorrow”, for which we need to

1http://cogcomp.org/page/publication_
view/844

know the document creation time (DCT). In ad-
dition to DATE, there are also other Timex types
including TIME (e.g., 8 am), DURATION (e.g., 3
years), and SET (e.g., every Monday).

Timexes carry temporal information explicitly,
but temporal information can also be conveyed im-
plicitly via temporal relations (i.e., “TempRel”).
In Example 2, there are two events: e1:exploded
and e2:died. The text does not tell us when they
happened, but we do know that there is a TempRel
between them, i.e., e1:exploded happened before
e2:died. The second basic component of tem-
poral understanding is thus the TempRel compo-
nent, which extracts TempRels automatically from
text. While the Timex component provides abso-
lute time anchors, the TempRel component pro-
vides the relative order of events. These two to-
gether provide a complete picture of the tempo-
ral dimension of a story, so they are naturally the
most important building blocks towards temporal
understanding.

Example 1: Presidents Leonid Kuchma of Ukraine and
Boris Yeltsin of Russia signed an economic cooperation
plan on (t1:February 27, 1998).
Example 2: A car (e1:exploded) in the middle of a
group of men playing volleyball. More than 10 people
have (e2:died), police said.

In this paper, we present CogCompTime (see
Fig. 1), a tool with both the Timex and TempRel
components, which are conceptually built on Zhao
et al. (2012) and Ning et al. (2017), respec-
tively. CogCompTime is a new implementation
that integrates both components and also incor-
porates the most recent advances in this area
(Ning et al., 2018a,b,c). Two highlights are:
First, CogCompTime achieves comparable perfor-
mance to state-of-the-art Timex systems, but is
almost two times faster than the second fastest,
HeidelTime (Strötgen and Gertz, 2010). Second,
CogCompTime improves the performance of the

http://cogcomp.org/page/publication_view/844
http://cogcomp.org/page/publication_view/844
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Figure 1: A snapshot of the interface of CogCompTime. From top to bottom: Input box, event and Timex
highlight, and two visualizations (timeline and graph). The document creation time was chosen to be 2018-05-15.

TempRel component by a large margin, from the
literature’s F1 ≈ 50 (UzZaman et al., 2013) to
F1 ≈ 70 (see details in Sec. 3). Given these
two contributions, we believe that CogCompTime
is a good demonstration of the state-of-the-art
in temporal understanding. In addition, since
CogCompTime is publicly available, it will pro-
vide easy access to users working on time-aware
applications, as well as valuable insight to re-
searchers seeking further improvements.

We briefly review the literature and explain in
detail the processing pipeline of CogCompTime
in Sec. 2: the Timex component, the Event Ex-
traction component, and the TempRel compo-
nent. Following that, we provide a benchmark
evaluation in Sec. 3 on the TempEval3 and the
MATRES datasets (UzZaman et al., 2013; Ning
et al., 2018c). Finally, we point out directions for
future work and conclude this paper.

2 System

The system pipeline of CogCompTime is shown
in Fig. 2: It takes raw text as input and uses
CogCompNLP (Khashabi et al., 2018) to extract
features such as lemmas, part-of-speech (POS)
tags, and semantic role labelings (SRL). Then
CogCompTime sequentially applies the Timex
component, the event extraction component, and
the TempRel component. Finally, both a graph
visualization and a timeline visualization are pro-
vided for the users. In the following, we will ex-

plain these main modules in detail.

2.1 Timex Component

Existing work on Timex extraction and normal-
ization falls into two categories: rule-based and
learning-based. Rule-based systems use regular
expressions to extract Timex in text and then deter-
ministic rules to normalize them (e.g., HeidelTime
(Strötgen and Gertz, 2010) and SUTime (Chang
and Manning, 2012)). Learning-based systems
use classification models to chunk out Timexes in
text and normalize them based on grammar pars-
ing (e.g., UWTime (Lee et al., 2014) and Pars-
ingTime (Angeli et al., 2012)). CogCompTime
adopts a mixed strategy: we use machine learning
in the Timex extraction step and rule parsing in
the normalization step. This mixed strategy, while
maintaining a state-of-the-art performance, signif-
icantly improves the computational efficiency of
the Timex component, as we show in Sec. 3.

Technically, the Timex extraction step can be
formulated as a generic text chunking problem and
the standard B(egin), I(nside), and O(utside) label-
ing scheme can be used. CogCompTime proposes
TemporalChunker, by retraining Illinois-Chunker
(Punyakanok and Roth, 2001) on top of the Timex
chunk annotations provided by the TempEval3
workshop (UzZaman et al., 2013). Here a ma-
chine learning based extraction algorithm signif-
icantly improves the computational efficiency by
quickly sifting out impossible text chunks, as com-
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Figure 2: System pipeline of CogCompTime: It preprocesses raw text input using CogCompNLP and then applies Timex,
Event Extraction, and TempRel components sequentially, with two user-friendly visualizations (i.e., graph-type visualization
and timeline-type visualization) provided at the end.

pared to regular expression matching, which has
to check every substring of text against regular ex-
pressions and is often slow. However, we do ad-
mit that learning-based extraction handles corner
cases not as well as rule-based systems because of
the limited training examples.

After Timexes are extracted, we apply rules to
normalize them. We think rule-based methods
are generally more natural for normalization: On
one hand, the desired formats of various types
of Timexes are already defined as rules by corre-
sponding annotation guidelines; on the other hand,
the intermediate steps of how one Timex is nor-
malized are not annotated in any existing datasets
(it is inherently hard to do so), so learning-based
methods usually have to introduce latent vari-
ables and need more training instances as a result.
Therefore, we have adopted a rule-based normal-
ization method. However, we admit that an obvi-
ous drawback is that the rule set needs to be re-
designed for every single language.

2.2 Event Extraction Component

Event extraction is closely related to how events
are defined. Generally speaking, an event is con-
sidered to be an action associated with the corre-
sponding participants. In the context of tempo-
ral understanding, events are usually represented
by their head verb token, so unlike the generic
chunking problem in Timex extraction, event ex-
traction can be formulated as a classification prob-
lem for each token. Specifically, CogCompTime
only considers those main-axis events, so event
extraction is simply a binary classification prob-
lem (i.e., whether or not a token is a main-axis
event or not). As defined by the MATRES annota-
tion scheme (Ning et al., 2018c), main-axis events
are those events that form the primary timeline of
a story and approximately 60%-70% of the verbs
are on the main-axis in MATRES. We extract lem-
mas and POS tags within a fixed window, SRL,

and prepositional phrase head, and train a sparse
averaged perceptron for event extraction.

2.3 TempRel Component
Temporal relations can be generally modeled by
a graph (called temporal graph), where the nodes
represent events and Timexes, and the edges
represent TempRels. With all the nodes ex-
tracted (by previous steps), the TempRel com-
ponent is to make predictions on the labels of
those edges. In this paper, the label set for
Event-Event TempRels is before, after, equal, and
vague and for Event-Timex TempRels is equal
and not-equal.2 State-of-the-art methods include,
e.g., ClearTK (Bethard, 2013), CAEVO (Cham-
bers et al., 2014), and Ning et al. (2017). The
TempRel task is known to be very difficult. Ning
et al. (2018c) attributes the difficulty partly to
the low inter-annotator agreement (IAA) of exist-
ing TempRel datasets and proposes a new Multi-
Axis Temporal RElations dataset of Start-points
(MATRES) with significantly improved IAA, so
for the TempRel task, we have chosen MATRES
as the benchmark in this paper.3

We also incorporate the recent progress of Ning
et al. (2017, 2018a,b). The feature set used for
TempRel is shown in Fig. 3, which contains fea-
tures derived individually from each node and
jointly from a node pair. Since a node can be ei-
ther an event or a Timex, an edge can also be ei-
ther an Event-Event edge or an Event-Timex edge
and the features have to vary a bit, as detailed
by Fig. 3. Note that for Event-Event edges, we
incorporate features from TemProb,4 which en-
codes prior knowledge of typical temporal orders

2The simplification of Event-Timex label set is due to our
observation that other labels have very low accuracies. As a
demo paper, we have chosen not to use them. However, we
think it is interesting and worth further investigation.

3Specifically, we only need to replace the TempRel anno-
tations in TempEval3 by the new annotations in MATRES.

4http://cogcomp.org/page/resource_
view/114

http://cogcomp.org/page/resource_view/114
http://cogcomp.org/page/resource_view/114
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of events (Ning et al., 2018b). With these fea-
tures, we also adopt the constraint-driven learn-
ing algorithm for TempRel classification proposed
in Ning et al. (2017) with sparse averaged per-
ceptron. Then our TempRel component assigns
local prediction scores (i.e., soft-max scores) to
each edge and solves an integer linear program-
ming (ILP) problem via Gurobi (Gurobi Optimiza-
tion, 2015) to achieve globally consistent temporal
graphs (please refer to Ning et al. (2018a) for de-
tails). CogCompTime is a unique package so far
that incorporates all the recent progress.

Figure 3: The primary features used in the TempRel com-
ponent (also standard features used in the literature). Since
there are two types of nodes (i.e., event and Timex), and two
types of TempRels (i.e., Event-Event and Event-Timex), we
put the common features above and split specific feature sets
below. Conjunctive features are not listed exhaustively here.

2.4 Visualization
As shown in Fig. 1, we highlight the extracted
Timexes and events in the text. Specifically for
Timexes, we also annotate their normalized val-
ues along with their chunks. We provide two
forms of visualization for the extracted TempRels.
Since TempRels can be naturally modeled by
a graph, a graph visualization is an obvious
choice and we use d3 (https://d3js.org/)
in CogCompTime. Additionally, we provide a
more compact visualization to those graphs via
timeline construction. Since a graph is only par-
tially ordered (as opposed to a timeline which is
fully ordered), we resort to the appearance order
of events in timeline construction when the tem-
poral order is vague according to its graph.

3 Benchmark Experiment

We used the dataset provided by the TempE-
val3 workshop, with the original train/test split in

our experiment: TimeBank and AQUAINT were
for training (256 articles), and Platinum was for
testing (20 articles). Note that we replaced the
TempRel annotations in the original TempEval3
datasets by MATRES due to its higher IAA. In the
Timex component, TemporalChunker by default
takes 10% of the train set as the development set,
and in other components, 5-fold cross-validation
was used for parameter tuning.

Table 1 evaluates the Timex component of
CogCompTime, comparing with state-of-the-art
systems. The “normalization” and “end-to-end”
columns were evaluated based on gold Timex
extraction and system Timex extraction, respec-
tively. The fact that CogCompTime had the
best extraction F1 and normalization accuracy but
not the best end-to-end performance is due to
our mixed strategy: Timexes extracted by our
learning-based TemporalChunker sometimes can-
not be normalized correctly by our rule-based nor-
malizer. This phenomenon is relatively more se-
vere in CogCompTime comparing to systems that
are consistently rule-based or learning-based in
both extraction and normalization. However, the
computational efficiency is improved significantly
by reducing the runtime of the second fastest,
HeidelTime, by more than 50%.

Table 2 shows the performance of the Event
Extraction and TempRel components. We also
copied the Timex extraction performance from Ta-
ble 1. Note that CogCompTime only extracts
those main-axis events as defined by MATRES.
Since Ning et al. (2018c) did not propose an
event extraction method, Table 2 is in fact the
first reported performance of event extraction on
MATRES and as we see, both the precision and
recall are better than those numbers reported in
TempEval3. Note that since CogCompTime works
on different annotations, this does not indicate that
our event extraction algorithm is better than those
participants in TempEval3; instead, this indicates
that the event extraction problem in MATRES is a
better-defined machine learning task.

The performance of TempRel extraction is fur-
ther evaluated in Table 2, both when the gold event
and Timex extraction is used and when system ex-
traction is used. As for Event-Event TempRels, we
also introduce a new relaxed metric5, where pre-
dictions of before/after are not penalized when the
gold label is vague. This is based on the definition

5This relaxed metric does not apply to Event-Timex
TempRels since the label set is only equal and not-equal, .

https://d3js.org/
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Timex Systems Extraction Normalization End-to-end Runtime
P R F1 Accuracy F1 Seconds

HeidelTime (Strötgen and Gertz, 2010) 84.0 79.7 81.8 78.1† 78.1 18
SUTime (Chang and Manning, 2012) 80.0 81.1 80.6 69.8† 69.8 16

UWTime (Lee et al., 2014) 86.7 80.4 83.5 84.4 82.7 400
CogCompTime 86.5 83.3 84.9 84.7 76.8 7

Table 1: Performance of our Timex component compared with state-of-the-art systems on a benchmark dataset, the Platinum
dataset from the TempEval3 workshop (UzZaman et al., 2013). The “extraction” and “normalization” columns are the two
intermediate steps. “Normalization” was evaluated given gold extraction, while “end-to-end” means system extraction was
used. Runtimes were evaluated under the same setup.
†HeidelTime and SUTime have no clear-cut between extraction and normalization, so even if gold Timex chunks are fed in,
their extraction step cannot be easily skipped.

of vague in MATRES, i.e., to assign vague labels
when either before or after is reasonable. We think
this relaxed metric is more suitable when creating
timelines from temporal graphs, where an order
must be picked anyhow when two events have a
vague relation. When system extraction was used,
the TempRel performance saw a large drop. How-
ever, the performance here, although it is perhaps
still not sufficiently good for some applications,
is already a significant step forward in temporal
understanding. As a reference point, the best sys-
tem in TempEval3, ClearTK (Bethard, 2013), had
P=34.08, R=28.40, F1=30.98 (using system ex-
traction) and P=37.32, R=35.25, F1=36.26 (using
gold extraction). Again, given the dataset differ-
ence, these numbers are not directly comparable,
but it indicates that the MATRES dataset used here
probably has the TempRel task better defined and
we hope this demo paper will be a good showcase
of the new state-of-the-art.

P R F1

Event Extraction 83.5 87.0 85.2
Timex Extraction 86.5 83.3 84.9

Gold Extraction
Event-Event 61.6 70.9 65.9
Event-Event (Relaxed) 75.2 74.8 75.0
Event-Timex 84.6 84.6 84.6

System Extraction
Event-Event 48.4 58.0 52.8
Event-Event (Relaxed) 75.6 61.8 68.0
Event-Timex 79.5 61.1 69.0

Table 2: Performance of the Event/Timex Extraction and
TempRel components when gold/system extraction is used.
The relaxed metric does not penalize the system if a be-
fore/after prediction is made on a vague relation. Please also
refer to the text about this metric.

4 Future Work

We plan to further improve CogCompTime in the
following directions. First, the MATRES dataset
(Ning et al., 2018c) only considers verb events,
but nominal events are also very common and
important, so we plan to incorporate nominal

event extraction and corresponding TempRel ex-
traction. Second, CogCompTime currently does
not incorporate an event coreference component.
Since coreference is important for bridging long-
distance event pairs, it is a desirable feature. We
can adopt existing event coreferencing techniques
such as Peng et al. (2016) in the next step. Third,
CogCompTime currently only works on the main-
axis events as defined in MATRES. How to incor-
porate other axes, e.g., intention axis, opinion axis,
and hypothesis axis, requires further investigation.

5 Conclusion

This paper presents CogCompTime, a new pack-
age that, given raw text, (1) extracts time expres-
sions (Timex) and normalizes them to a standard
format, and (2) extracts events on the main time
axis of a story and the temporal relations between
events and Timexes. CogCompTime takes advan-
tage of many recent advances and achieves state-
of-the-art performance in both tasks. We think this
demo will be interesting for a broad audience be-
cause it is useful not only for identifying the short-
comings of existing methods, but also for applica-
tions that depend on the temporal understanding
of natural language text.
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