@inproceedings{nghiem-ananiadou-2018-aplenty,
title = "{APL}enty: annotation tool for creating high-quality datasets using active and proactive learning",
author = "Nghiem, Minh-Quoc and
Ananiadou, Sophia",
editor = "Blanco, Eduardo and
Lu, Wei",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-2019/",
doi = "10.18653/v1/D18-2019",
pages = "108--113",
abstract = "In this paper, we present APLenty, an annotation tool for creating high-quality sequence labeling datasets using active and proactive learning. A major innovation of our tool is the integration of automatic annotation with active learning and proactive learning. This makes the task of creating labeled datasets easier, less time-consuming and requiring less human effort. APLenty is highly flexible and can be adapted to various other tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nghiem-ananiadou-2018-aplenty">
<titleInfo>
<title>APLenty: annotation tool for creating high-quality datasets using active and proactive learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minh-Quoc</namePart>
<namePart type="family">Nghiem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present APLenty, an annotation tool for creating high-quality sequence labeling datasets using active and proactive learning. A major innovation of our tool is the integration of automatic annotation with active learning and proactive learning. This makes the task of creating labeled datasets easier, less time-consuming and requiring less human effort. APLenty is highly flexible and can be adapted to various other tasks.</abstract>
<identifier type="citekey">nghiem-ananiadou-2018-aplenty</identifier>
<identifier type="doi">10.18653/v1/D18-2019</identifier>
<location>
<url>https://aclanthology.org/D18-2019/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>108</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T APLenty: annotation tool for creating high-quality datasets using active and proactive learning
%A Nghiem, Minh-Quoc
%A Ananiadou, Sophia
%Y Blanco, Eduardo
%Y Lu, Wei
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F nghiem-ananiadou-2018-aplenty
%X In this paper, we present APLenty, an annotation tool for creating high-quality sequence labeling datasets using active and proactive learning. A major innovation of our tool is the integration of automatic annotation with active learning and proactive learning. This makes the task of creating labeled datasets easier, less time-consuming and requiring less human effort. APLenty is highly flexible and can be adapted to various other tasks.
%R 10.18653/v1/D18-2019
%U https://aclanthology.org/D18-2019/
%U https://doi.org/10.18653/v1/D18-2019
%P 108-113
Markdown (Informal)
[APLenty: annotation tool for creating high-quality datasets using active and proactive learning](https://aclanthology.org/D18-2019/) (Nghiem & Ananiadou, EMNLP 2018)
ACL