@inproceedings{wang-etal-2018-cytonmt,
title = "{C}yton{MT}: an Efficient Neural Machine Translation Open-source Toolkit Implemented in {C}++",
author = "Wang, Xiaolin and
Utiyama, Masao and
Sumita, Eiichiro",
editor = "Blanco, Eduardo and
Lu, Wei",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-2023/",
doi = "10.18653/v1/D18-2023",
pages = "133--138",
abstract = "This paper presents an open-source neural machine translation toolkit named CytonMT. The toolkit is built from scratch only using C++ and NVIDIA`s GPU-accelerated libraries. The toolkit features training efficiency, code simplicity and translation quality. Benchmarks show that cytonMT accelerates the training speed by 64.5{\%} to 110.8{\%} on neural networks of various sizes, and achieves competitive translation quality."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2018-cytonmt">
<titleInfo>
<title>CytonMT: an Efficient Neural Machine Translation Open-source Toolkit Implemented in C++</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaolin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masao</namePart>
<namePart type="family">Utiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eiichiro</namePart>
<namePart type="family">Sumita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents an open-source neural machine translation toolkit named CytonMT. The toolkit is built from scratch only using C++ and NVIDIA‘s GPU-accelerated libraries. The toolkit features training efficiency, code simplicity and translation quality. Benchmarks show that cytonMT accelerates the training speed by 64.5% to 110.8% on neural networks of various sizes, and achieves competitive translation quality.</abstract>
<identifier type="citekey">wang-etal-2018-cytonmt</identifier>
<identifier type="doi">10.18653/v1/D18-2023</identifier>
<location>
<url>https://aclanthology.org/D18-2023/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>133</start>
<end>138</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CytonMT: an Efficient Neural Machine Translation Open-source Toolkit Implemented in C++
%A Wang, Xiaolin
%A Utiyama, Masao
%A Sumita, Eiichiro
%Y Blanco, Eduardo
%Y Lu, Wei
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F wang-etal-2018-cytonmt
%X This paper presents an open-source neural machine translation toolkit named CytonMT. The toolkit is built from scratch only using C++ and NVIDIA‘s GPU-accelerated libraries. The toolkit features training efficiency, code simplicity and translation quality. Benchmarks show that cytonMT accelerates the training speed by 64.5% to 110.8% on neural networks of various sizes, and achieves competitive translation quality.
%R 10.18653/v1/D18-2023
%U https://aclanthology.org/D18-2023/
%U https://doi.org/10.18653/v1/D18-2023
%P 133-138
Markdown (Informal)
[CytonMT: an Efficient Neural Machine Translation Open-source Toolkit Implemented in C++](https://aclanthology.org/D18-2023/) (Wang et al., EMNLP 2018)
ACL