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Distance (TVD) for comparing prediction scores
ŷ and Jensen-Shannon Divergence (JSD) for com-
paring weighting distributions ↵:

TVD(ŷ1, ŷ2) =
1

2

|Y|X

i=1

|ŷ1i � ŷ2i| ;

JSD(↵1,↵2) =
1

2
KL[↵1 k ↵̄] +

1

2
KL[↵2 k ↵̄],

where ↵̄ = ↵1+↵2
2 .

3.2 Uniform as the Adversary
First, we test the validity of the classification tasks
and datasets by examining whether attention is
necessary in the first place. We argue that if at-
tention models are not useful compared to very
simple baselines, i.e. their parameter capacity is
not being used, there is no point in using their out-
comes for any type of explanation to begin with.
We thus introduce a uniform model variant, iden-
tical to the main setup except that the attention dis-
tribution is frozen to uniform weights over the hid-
den states.

The results comparing this baseline with the
base model are presented in Table 2. If attention
was a necessary component for good performance,
we would expect a large drop between the two
rightmost columns. Somewhat surprisingly, for
three of the classification tasks the attention layer
appears to offer little to no improvement whatso-
ever. We conclude that these datasets, notably AG
NEWS and 20 NEWSGROUPS, are not useful test
cases for the debated question: attention is not ex-
planation if you don’t need it. We subsequently ig-
nore the two News datasets, but keep SST, which
we deem borderline.

3.3 Variance within a Model
We now test whether the variances observed by
Jain and Wallace between trained attention scores
and adversarially-obtained ones are unusual. We
do this by repeating their analysis on eight mod-
els trained from the main setup using different ini-
tialization random seeds. The variance introduced
in the attention distributions represents a baseline
amount of variance that would be considered nor-
mal.

The results are plotted in Figure 3 using the
same plane as Jain and Wallace’s Figure 8 (with
two of these reproduced as (e-f)). Left-heavy vi-
olins are interpreted as data classes for which the

compared model produces attention distributions
similar to the base model, and so having an adver-
sary that manages to ‘pull right’ supports the argu-
ment that distributions are easy to manipulate. We
see that SST distributions (c, e) are surprisingly ro-
bust to random seed change, validating our choice
to continue examining this dataset despite its bor-
derline F1 score. On the Diabetes dataset, the neg-
ative class is already subject to relatively arbitrary
distributions from the different random seed set-
tings (d), making the highly divergent results from
the overly-flexible adversarial setup (f) seem less
impressive. Our consistently-adversarial setup in
§4 will further explore the difficulty of surpassing
seed-induced variance between attention distribu-
tions.

3.4 Diagnosing Attention Distributions by
Guiding Simpler Models

As a more direct examination of models, and as
a complementary approach to Jain and Wallace
(2019)’s measurement of backward-pass gradient
flows through the model for gauging token impor-
tance, we introduce a post-hoc training protocol of
a non-contextual model guided by pre-set weight
distributions. The idea is to examine the predic-
tion power of attention distributions in a ‘clean’
setting, where the trained parts of the model have
no access to neighboring tokens of the instance.
If pre-trained scores from an attention model per-
form well, we take this to mean they are helpful
and consistent, fulfilling a certain sense of explain-
ability. In addition, this setup serves as an effective
diagnostic tool for assessing the utility of adver-
sarial attention distributions: if such distributions
are truly alternative, they should be equally useful
as guides as their base equivalent, and thus per-
form comparably.

Our diagnostic model is created by replacing the
main setup’s LSTM and attention parameters with
a token-level affine hidden layer with tanh acti-
vation (forming an MLP), and forcing its output
scores to be weighted by a pre-set, per-instance
distribution, during both training and testing. This
setup is illustrated in Figure 4. The guide weights
we impose are the following: Uniform, where we
force the MLP outputs to be considered equally
across each instance, effectively forming an un-
weighted baseline; Trained MLP, where we do
not freeze the weights layer, instead allowing the





19

or meaningless, and under this definition the exis-
tence of multiple different explanations is not nec-
essarily indicative of the quality of a single one.

Jain and Wallace define attention and explana-
tion as measuring the “responsibility” each input
token has on a prediction. This aligns more closely
with the more rigorous (Lipton, 2016, §3.1.1) def-
inition of transparency, or Rudin (2018)’s defini-
tion of interpretability: human understanding of
the model as a whole rather than of its respective
parts. The ultimate question posed so far as ‘is at-
tention explanation?’ seems to be: do high atten-
tion weights on certain elements in the input lead
the model to make its prediction? This question is
ultimately left largely unanswered by prior work,
as we address in previous sections. However, un-
der the given definition of transparency, the au-
thors’ exclusivity requisite is well-defined and we
find value in their counterfactual framework as a
concept – if a model is capable of producing mul-
tiple sets of diverse attention weights for the same
prediction, then the relationship between inputs
and outputs used to make predictions is not under-
stood by attention analysis. This provides us with
the motivation to implement the adversarial setup
coherently and to derive and present conclusions
from it. To this end, we additionally provide our
§3.4 model to test the relationship between input
tokens and output.

In the terminology of Doshi-Velez and
Kim (2017), our proposed methods provide a
functionally-grounded evaluation of attention as
explanation, i.e. an analysis conducted on proxy
tasks without human evaluation. We believe the
proxies we have provided can be used to test the
validity of attention as a form of explanation from
the ground-up, based on the type of explanation
one is looking for.

6 Attention is All you Need it to Be

Whether or not attention is explanation depends
on the definition of explainability one is looking
for: plausible or faithful explanations (or both).
We believe that prior work focused on providing
plausible rationales is not invalidated by Jain and
Wallace’s or our results. However, we have con-
firmed that adversarial distributions can be found
for LSTM models in some classification tasks, as
originally hypothesized by Jain and Wallace. This
should provide pause to researchers who are look-
ing to attention distributions for one true, faithful

interpretation of the link their model has estab-
lished between inputs and outputs. At the same
time, we have provided a suite of experiments that
researchers can make use of in order to make in-
formed decisions about the quality of their mod-
els’ attention mechanisms when used as explana-
tion for model predictions.

We’ve shown that alternative attention distribu-
tions found via adversarial training methods per-
form poorly relative to traditional attention mech-
anisms when used in our diagnostic MLP model.
These results indicate that trained attention mech-
anisms in RNNs on our datasets do in fact learn
something meaningful about the relationship be-
tween tokens and prediction which cannot be eas-
ily ‘hacked’ adversarially.

We view the conditions under which adversarial
distributions can actually be found in practice to be
an important direction for future work. Additional
future directions for this line of work include ap-
plication on other tasks such as sequence modeling
and multi-document analysis (NLI, QA); exten-
sion to languages other than English; and adding a
human evaluation for examining the level of agree-
ment with our measures. We also believe our work
can provide value to theoretical analysis of atten-
tion models, motivating development of analytical
methods to estimate the usefulness of attention as
an explanation based on dataset and model prop-
erties.
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