@inproceedings{ghosal-etal-2019-dialoguegcn,
title = "{D}ialogue{GCN}: A Graph Convolutional Neural Network for Emotion Recognition in Conversation",
author = "Ghosal, Deepanway and
Majumder, Navonil and
Poria, Soujanya and
Chhaya, Niyati and
Gelbukh, Alexander",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1015/",
doi = "10.18653/v1/D19-1015",
pages = "154--164",
abstract = "Emotion recognition in conversation (ERC) has received much attention, lately, from researchers due to its potential widespread applications in diverse areas, such as health-care, education, and human resources. In this paper, we present Dialogue Graph Convolutional Network (DialogueGCN), a graph neural network based approach to ERC. We leverage self and inter-speaker dependency of the interlocutors to model conversational context for emotion recognition. Through the graph network, DialogueGCN addresses context propagation issues present in the current RNN-based methods. We empirically show that this method alleviates such issues, while outperforming the current state of the art on a number of benchmark emotion classification datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghosal-etal-2019-dialoguegcn">
<titleInfo>
<title>DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deepanway</namePart>
<namePart type="family">Ghosal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Navonil</namePart>
<namePart type="family">Majumder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niyati</namePart>
<namePart type="family">Chhaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Gelbukh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion recognition in conversation (ERC) has received much attention, lately, from researchers due to its potential widespread applications in diverse areas, such as health-care, education, and human resources. In this paper, we present Dialogue Graph Convolutional Network (DialogueGCN), a graph neural network based approach to ERC. We leverage self and inter-speaker dependency of the interlocutors to model conversational context for emotion recognition. Through the graph network, DialogueGCN addresses context propagation issues present in the current RNN-based methods. We empirically show that this method alleviates such issues, while outperforming the current state of the art on a number of benchmark emotion classification datasets.</abstract>
<identifier type="citekey">ghosal-etal-2019-dialoguegcn</identifier>
<identifier type="doi">10.18653/v1/D19-1015</identifier>
<location>
<url>https://aclanthology.org/D19-1015/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>154</start>
<end>164</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation
%A Ghosal, Deepanway
%A Majumder, Navonil
%A Poria, Soujanya
%A Chhaya, Niyati
%A Gelbukh, Alexander
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F ghosal-etal-2019-dialoguegcn
%X Emotion recognition in conversation (ERC) has received much attention, lately, from researchers due to its potential widespread applications in diverse areas, such as health-care, education, and human resources. In this paper, we present Dialogue Graph Convolutional Network (DialogueGCN), a graph neural network based approach to ERC. We leverage self and inter-speaker dependency of the interlocutors to model conversational context for emotion recognition. Through the graph network, DialogueGCN addresses context propagation issues present in the current RNN-based methods. We empirically show that this method alleviates such issues, while outperforming the current state of the art on a number of benchmark emotion classification datasets.
%R 10.18653/v1/D19-1015
%U https://aclanthology.org/D19-1015/
%U https://doi.org/10.18653/v1/D19-1015
%P 154-164
Markdown (Informal)
[DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation](https://aclanthology.org/D19-1015/) (Ghosal et al., EMNLP-IJCNLP 2019)
ACL