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Abstract

We present effective pre-training strategies
for neural machine translation (NMT) using
parallel corpora involving a pivot language,
i.e., source-pivot and pivot-target, leading to
a significant improvement in source→target
translation. We propose three methods to
increase the relation among source, pivot,
and target languages in the pre-training:
1) step-wise training of a single model for
different language pairs, 2) additional adapter
component to smoothly connect pre-trained
encoder and decoder, and 3) cross-lingual
encoder training via autoencoding of the
pivot language. Our methods greatly out-
perform multilingual models up to +2.6%
BLEU in WMT 2019 French→German and
German→Czech tasks. We show that our
improvements are valid also in zero-shot/zero-
resource scenarios.

1 Introduction

Machine translation (MT) research is biased to-
wards language pairs including English due to
the ease of collecting parallel corpora. Trans-
lation between non-English languages, e.g.,
French→German, is usually done with pivot-
ing through English, i.e., translating French
(source) input to English (pivot) first with a
French→English model which is later translated
to German (target) with a English→German
model (De Gispert and Marino, 2006; Utiyama
and Isahara, 2007; Wu and Wang, 2007). How-
ever, pivoting requires doubled decoding time and
the translation errors are propagated or expanded
via the two-step process.

Therefore, it is more beneficial to build a sin-
gle source→target model directly for both effi-
ciency and adequacy. Since non-English language
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pairs often have little or no parallel text, common
choices to avoid pivoting in NMT are generating
pivot-based synthetic data (Bertoldi et al., 2008;
Chen et al., 2017) or training multilingual systems
(Firat et al., 2016; Johnson et al., 2017).

In this work, we present novel transfer learn-
ing techniques to effectively train a single, di-
rect NMT model for a non-English language
pair. We pre-train NMT models for source→pivot
and pivot→target, which are transferred to a
source→target model. To optimize the usage of
given source-pivot and pivot-target parallel data
for the source→target direction, we devise the fol-
lowing techniques to smooth the discrepancy be-
tween the pre-trained and final models:

• Step-wise pre-training with careful parameter
freezing.

• Additional adapter component to familiarize
the pre-trained decoder with the outputs of
the pre-trained encoder.

• Cross-lingual encoder pre-training with au-
toencoding of the pivot language.

Our methods are evaluated in two non-English
language pairs of WMT 2019 news translation
tasks: high-resource (French→German) and low-
resource (German→Czech). We show that NMT
models pre-trained with our methods are highly ef-
fective in various data conditions, when fine-tuned
for source→target with:

• Real parallel corpus

• Pivot-based synthetic parallel corpus (zero-
resource)

• None (zero-shot)

For each data condition, we consistently outper-
form strong baselines, e.g., multilingual, pivoting,
or teacher-student, showing the universal effec-
tiveness of our transfer learning schemes.
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The rest of the paper is organized as follows.
We first review important previous works on pivot-
based MT in Section 2. Our three pre-training
techniques are presented in Section 3. Section 4
shows main results of our methods with a detailed
description of the experimental setups. Section
5 studies variants of our methods and reports the
results without source-target parallel resources or
with large synthetic parallel data. Section 6 draws
conclusion of this work with future research direc-
tions.

2 Related Work

In this section, we first review existing approaches
to leverage a pivot language in low-resource/zero-
resource MT. They can be divided into three cate-
gories:

1. Pivot translation (pivoting). The most
naive approach is reusing (already trained)
source→pivot and pivot→target models di-
rectly, decoding twice via the pivot language
(Kauers et al., 2002; De Gispert and Marino,
2006). One can keep N -best hypotheses in
the pivot language to reduce the prediction
bias (Utiyama and Isahara, 2007) and im-
prove the final translation by system combi-
nation (Costa-Jussà et al., 2011), which how-
ever increases the translation time even more.
In multilingual NMT, Firat et al. (2016) mod-
ify the second translation step (pivot→target)
to use source and pivot language sentences
together as the input.

2. Pivot-based synthetic parallel data. We
may translate the pivot side of given pivot-
target parallel data using a pivot→source
model (Bertoldi et al., 2008), or the other way
around translating source-pivot data using a
pivot→target model (De Gispert and Marino,
2006). For NMT, the former is extended by
Zheng et al. (2017) to compute the expec-
tation over synthetic source sentences. The
latter is also called teacher-student approach
(Chen et al., 2017), where the pivot→target
model (teacher) produces target hypotheses
for training the source→target model (stu-
dent).

3. Pivot-based model training. In phrase-
based MT, there have been many ef-
forts to combine phrase/word level fea-
tures of source-pivot and pivot-target into

a source→target system (Utiyama and Isa-
hara, 2007; Wu and Wang, 2007; Bakhshaei
et al., 2010; Zahabi et al., 2013; Zhu et al.,
2014; Miura et al., 2015). In NMT, Cheng
et al. (2017) jointly train for three transla-
tion directions of source-pivot-target by shar-
ing network components, where Ren et al.
(2018) use the expectation-maximization al-
gorithm with the target sentence as a latent
variable. Lu et al. (2018) deploy intermedi-
ate recurrent layers which are common for
multiple encoders and decoders, while John-
son et al. (2017) share all components of
a single multilingual model. Both methods
train the model for language pairs involv-
ing English but enable zero-shot translation
for unseen non-English language pairs. For
this, Ha et al. (2017) encode the target lan-
guage as an additional embedding and filter
out non-target tokens in the output. Lakew
et al. (2017) combine the multilingual train-
ing with synthetic data generation to improve
the zero-shot performance iteratively, where
Sestorain et al. (2018) applies the NMT pre-
diction score and a language model score to
each synthetic example as gradient weights.

Our work is based on transfer learning (Zoph
et al., 2016) and belongs to the third category:
model training. On the contrary to the multilingual
joint training, we suggest two distinct steps: pre-
training (with source-pivot and pivot-target data)
and fine-tuning (with source-target data). With our
proposed methods, we prevent the model from los-
ing its capacity to other languages while utilizing
the information from related language pairs well,
as shown in the experiments (Section 4).

Our pivot adapter (Section 3.2) shares the same
motivation with the interlingua component of Lu
et al. (2018), but is much compact, independent
of variable input length, and easy to train offline.
The adapter training algorithm is adopted from
bilingual word embedding mapping (Xing et al.,
2015). Our cross-lingual encoder (Section 3.3) is
inspired by cross-lingual sentence embedding al-
gorithms using NMT (Schwenk and Douze, 2017;
Schwenk, 2018).

Transfer learning was first introduced to NMT
by Zoph et al. (2016), where only the source
language is switched before/after the transfer.
Nguyen and Chiang (2017) and Kocmi and Bojar
(2018) use shared subword vocabularies to work
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Figure 1: Plain transfer learning.

with more languages and help target language
switches. Kim et al. (2019) propose additional
techniques to enable NMT transfer even without
shared vocabularies. To the best of our knowl-
edge, we are the first to propose transfer learn-
ing strategies specialized in utilizing a pivot lan-
guage, transferring a source encoder and a target
decoder at the same time. Also, for the first time,
we present successful zero-shot translation results
only with pivot-based NMT pre-training.

3 Pivot-based Transfer Learning

Our methods are based on a simple transfer learn-
ing principle for NMT, adjusted to a usual data
condition for non-English language pairs: lots of
source-pivot and pivot-target parallel data, little
(low-resource) or no (zero-resource) source-target
parallel data. Here are the core steps of the plain
transfer (Figure 1):

1. Pre-train a source→pivot model with
a source-pivot parallel corpus and a
pivot→target model with a pivot-target
parallel corpus.

2. Initialize the source→target model with
the source encoder from the pre-trained
source→pivot model and the target decoder
from the pre-trained pivot→target model.

3. Continue the training with a source-target
parallel corpus.

If we skip the last step (for zero-resource cases)
and perform the source→target translation di-
rectly, it corresponds to zero-shot translation.

Thanks to the pivot language, we can pre-train
a source encoder and a target decoder without
changing the model architecture or training objec-
tive for NMT. On the contrary to other NMT trans-
fer scenarios (Zoph et al., 2016; Nguyen and Chi-
ang, 2017; Kocmi and Bojar, 2018), this principle
has no language mismatch between transferor and
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Figure 2: Step-wise pre-training.

transferee on each source/target side. Experimen-
tal results (Section 4) also show its competitive-
ness despite its simplicity.

Nonetheless, the main caveat of this basic pre-
training is that the source encoder is trained to be
used by an English decoder, while the target de-
coder is trained to use the outputs of an English
encoder — not of a source encoder. In the follow-
ing, we propose three techniques to mitigate the
inconsistency of source→pivot and pivot→target
pre-training stages. Note that these techniques are
not exclusive and some of them can complement
others for a better performance of the final model.

3.1 Step-wise Pre-training

A simple remedy to make the pre-trained encoder
and decoder refer to each other is to train a single
NMT model for source→pivot and pivot→target
in consecutive steps (Figure 2):

1. Train a source→pivot model with a source-
pivot parallel corpus.

2. Continue the training with a pivot-target par-
allel corpus, while freezing the encoder pa-
rameters of 1.

In the second step, a target decoder is trained to
use the outputs of the pre-trained source encoder
as its input. Freezing the pre-trained encoder en-
sures that, even after the second step, the encoder
is still modeling the source language although we
train the NMT model for pivot→target. Without
the freezing, the encoder completely adapts to the
pivot language input and is likely to forget source
language sentences.

We build a joint vocabulary of the source and
pivot languages so that the encoder effectively rep-
resents both languages. The frozen encoder is pre-
trained for the source language in the first step,
but also able to encode a pivot language sentence
in a similar representation space. It is more ef-
fective for linguistically similar languages where
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many tokens are common for both languages in
the joint vocabulary.

3.2 Pivot Adapter

Instead of the step-wise pre-training, we can also
postprocess the network to enhance the connec-
tion between the source encoder and the target de-
coder which are pre-trained individually. Our idea
is that, after the pre-training steps, we adapt the
source encoder outputs to the pivot encoder out-
puts to which the target decoder is more familiar
(Figure 3). We learn a linear mapping between
the two representation spaces with a small source-
pivot parallel corpus:

1. Encode the source sentences with the source
encoder of the pre-trained source→pivot
model.

2. Encode the pivot sentences with the pivot en-
coder of the pre-trained pivot→target model.

3. Apply a pooling to each sentence of 1 and
2, extracting representation vectors for each
sentence pair: (s, p).

4. Train a mapping M ∈ Rd×d to minimize the
distance between the pooled representations
s ∈ Rd×1 and p ∈ Rd×1, where the source
representation is first fed to the mapping:

M̂ = argmin
M

∑
s,p

‖Ms− p‖2 (1)

where d is the hidden layer size of the encoders.
Introducing matrix notations S ∈ Rd×n and P ∈
Rd×n, which concatenate the pooled representa-
tions of all n sentences for each side in the source-
pivot corpus, we rewrite Equation 1 as:

M̂ = argmin
M

‖MS−P‖2 (2)
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Figure 4: Cross-lingual encoder.

which can be easily computed by the singular
value decomposition (SVD) for a closed-form so-
lution, if we put an orthogonality constraint on M
(Xing et al., 2015). The resulting optimization is
also called Procrustes problem.

The learned mapping is multiplied to encoder
outputs of all positions in the final source→target
tuning step. With this mapping, the source en-
coder emits sentence representations that lie in a
similar space of the pivot encoder. Since the tar-
get decoder is pre-trained for pivot→target and ac-
customed to receive the pivot encoder outputs, it
should process the mapped encoder outputs better
than the original source encoder outputs.

3.3 Cross-lingual Encoder
As a third technique, we modify the source→pivot
pre-training procedure to force the encoder to have
cross-linguality over source and pivot languages;
modeling source and pivot sentences in the same
mathematical space. We achieve this by an ad-
ditional autoencoding objective from a pivot sen-
tence to the same pivot sentence (Figure 4).

The encoder is fed with sentences of both
source and pivot languages, which are processed
by a shared decoder that outputs only the pivot
language. In this way, the encoder is learned to
produce representations in a shared space regard-
less of the input language, since they are used in
the same decoder. This cross-lingual space facili-
tates smoother learning of the final source→target
model, because the decoder is pre-trained to trans-
late the pivot language.

The same input/output in autoencoding encour-
ages, however, merely copying the input; it is said
to be not proper for learning complex structure of
the data domain (Vincent et al., 2008). Denoising
autoencoder addresses this by corrupting the in-
put sentences by artificial noises (Hill et al., 2016).
Learning to reconstruct clean sentences, it encodes
linguistic structures of natural language sentences,
e.g., word order, better than copying. Here are the
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noise types we use (Edunov et al., 2018):

• Drop tokens randomly with a probability pdel

• Replace tokens with a <BLANK> token ran-
domly with a probability prep

• Permute the token positions randomly so that
the difference between an original index and
its new index is less than or equal to dper

We set pdel = 0.1, prep = 0.1, and dper = 3 in our
experiments.

The key idea of all three methods is to build a
closer connection between the pre-trained encoder
and decoder via a pivot language. The differ-
ence is in when we do this job: Cross-lingual
encoder (Section 3.3) changes the encoder pre-
training stage (source→pivot), while step-wise
pre-training (Section 3.1) modifies decoder pre-
training stage (pivot→target). Pivot adapter (Sec-
tion 3.2) is applied after all pre-training steps.

4 Main Results

We evaluate the proposed transfer learning tech-
niques in two non-English language pairs of WMT
2019 news translation tasks1: French→German
and German→Czech.

Data We used the News Commentary v14 par-
allel corpus and newstest2008-2010 test sets as
the source-target training data for both tasks.
The newstest sets were oversampled four times.
The German→Czech task was originally limited
to unsupervised learning (using only monolin-
gual corpora) in WMT 2019, but we relaxed this
constraint by the available parallel data. We
used newstest2011 as a validation set and new-
stest2012/newstest2013 as the test sets.

Both language pairs have much abundant paral-
lel data in source-pivot and pivot-target with En-
glish as the pivot language. Detailed corpus statis-
tics are given in Table 1.

Preprocessing We used the Moses2 tokenizer
and applied true-casing on all corpora. For all
transfer learning setups, we learned byte pair en-
coding (BPE) (Sennrich et al., 2016) for each lan-
guage individually with 32k merge operations, ex-
cept for cross-lingual encoder training with joint
BPE only over source and pivot languages. This

1
http://www.statmt.org/wmt19/translation-task.

html
2
http://www.statmt.org/moses/

Words
Usage Data Sentences (Source)

Pre-train
fr-en 35M 950M
en-de 9.1M 170M

Fine-tune fr-de 270k 6.9M

Pre-train
de-en 9.1M 181M
en-cs 49M 658M

Fine-tune de-cs 230k 5.1M

Table 1: Parallel training data statistics.

is for modularity of pre-trained models: for ex-
ample, a French→English model trained with
joint French/English/German BPE could be trans-
ferred smoothly to a French→German model, but
would not be optimal for a transfer to e.g., a
French→Korean model. Once we pre-train an
NMT model with separate BPE vocabularies, we
can reuse it for various final language pairs with-
out wasting unused portion of subword vocabu-
laries (e.g., German-specific tokens in building a
French→Korean model).

On the contrary, baselines used joint BPE over
all languages with also 32k merges.

Model and Training The 6-layer base Trans-
former architecture (Vaswani et al., 2017) was
used for all of our experiments. Batch size was
set to 4,096 tokens. Each checkpoint amounts to
10k updates for pre-training and 20k updates for
fine-tuning.

Each model was optimized with Adam (Kingma
and Ba, 2014) with an initial learning rate of
0.0001, which was multiplied by 0.7 whenever
perplexity on the validation set was not improved
for three checkpoints. When it was not improved
for eight checkpoints, we stopped the training.
The NMT model training and transfer were done
with the OPENNMT toolkit (Klein et al., 2017).

Pivot adapter was trained using the MUSE

toolkit (Conneau et al., 2018), which was orig-
inally developed for bilingual word embeddings
but we adjusted for matching sentence represen-
tations.

Baselines We thoroughly compare our ap-
proaches to the following baselines:

1. Direct source→target: A standard NMT
model trained on given source→target paral-

http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/moses/
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French→German German→Czech

newstest2012 newstest2013 newstest2012 newstest2013

BLEU [%] TER [%] BLEU [%] TER [%] BLEU [%] TER [%] BLEU [%] TER [%]

Direct source→target 14.8 75.1 16.0 75.1 11.1 81.1 12.8 77.7
Multilingual many-to-many 18.7 71.9 19.5 72.6 14.9 76.6 16.5 73.2
Multilingual many-to-one 18.3 71.7 19.2 71.5 13.1 79.6 14.6 75.8

Plain transfer 17.5 72.3 18.7 71.8 15.4 75.4 18.0 70.9
+ Pivot adapter 18.0 71.9 19.1 71.1 15.9 75.0 18.7 70.3
+ Cross-lingual encoder 17.4 72.1 18.9 71.8 15.0 75.9 17.6 71.4

+ Pivot adapter 17.8 72.3 19.1 71.5 15.6 75.3 18.1 70.8
Step-wise pre-training 18.6 70.7 19.9 70.4 15.6 75.0 18.1 70.9
+ Cross-lingual encoder 19.5 69.8 20.7 69.4 16.2 74.6 19.1 69.9

Table 2: Main results fine-tuned with source-target parallel data.

lel data.

2. Multilingual: A single, shared NMT model
for multiple translation directions (Johnson
et al., 2017).

• Many-to-many: Trained for all possi-
ble directions among source, target, and
pivot languages.
• Many-to-one: Trained for only the

directions to target language, i.e.,
source→target and pivot→target, which
tends to work better than many-to-many
systems (Aharoni et al., 2019).

In Table 2, we report principal results after fine-
tuning the pre-trained models using source-target
parallel data.

As for baselines, multilingual models are bet-
ter than a direct NMT model. The many-to-many
models surpass the many-to-one models; since
both tasks are in a low-resource setup, the model
gains a lot from related language pairs even if the
target languages do not match.

Plain transfer of pre-trained encoder/decoder
without additional techniques (Figure 1) shows
a nice improvement over the direct baseline: up
to +2.7% BLEU for French→German and +5.2%
BLEU for German→Czech. Pivot adapter pro-
vides an additional boost of maximum +0.7%
BLEU or -0.7% TER.

Cross-lingual encoder pre-training is proved to
be not effective in the plain transfer setup. It
shows no improvements over plain transfer in
French→German, and 0.4% BLEU worse perfor-
mance in German→Czech. We conjecture that

the cross-lingual encoder needs a lot more data to
be fine-tuned for another decoder, where the en-
coder capacity is basically divided into two lan-
guages at the beginning of the fine-tuning. On the
other hand, the pivot adapter directly improves the
connection to an individually pre-trained decoder,
which works nicely with small fine-tuning data.

Pivot adapter gives an additional improvement
on top of the cross-lingual encoder; up to +0.4%
BLEU in French→German and +0.6% BLEU in
German→Czech. In this case, we extract source
and pivot sentence representations from the same
shared encoder for training the adapter.

Step-wise pre-training gives a big improve-
ment up to +1.2% BLEU or -1.6% TER against
plain transfer in French→German. It shows the
best performance in both tasks when combined
with the cross-lingual encoder: up to +1.2%
BLEU in French→German and +2.6% BLEU in
German→Czech, compared to the multilingual
baseline. Step-wise pre-training prevents the
cross-lingual encoder from degeneration, since
the pivot→target pre-training (Step 2 in Section
3.1) also learns the encoder-decoder connection
with a large amount of data — in addition to the
source→target tuning step afterwards.

Note that the pivot adapter, which inserts an ex-
tra layer between the encoder and decoder, is not
appropriate after the step-wise pre-training; the
decoder is already trained to correlate well with
the pre-trained encoder. We experimented with the
pivot adapter on top of step-wise pre-trained mod-
els — with or without cross-lingual encoder — but
obtained detrimental results.

Compared to pivot translation (Table 5), our
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best results are also clearly better in French
→German and comparable in German→Czech.

5 Analysis

In this section, we conduct ablation studies on the
variants of our methods and see how they perform
in different data conditions.

5.1 Pivot Adapter

newstest2013

Adapter Training BLEU [%] TER [%]

None 18.2 70.7
Max-pooled 18.4 70.5

Average-pooled 18.7 70.3

Plain transfer 18.0 70.9

Table 3: Pivot adapter variations (German→Czech).
All results are tuned with source-target parallel data.

Firstly, we compare variants of the pivot adapter
(Section 3.2) in Table 3. The row “None” shows
that a randomly initialized linear layer already
guides the pre-trained encoder/decoder to harmo-
nize with each other. Of course, when we train
the adapter to map source encoder outputs to
pivot encoder outputs, the performance gets bet-
ter. For compressing encoder outputs over posi-
tions, average-pooling is better than max-pooling.
We observed the same trend in the other test set
and in French→German.

We also tested nonlinear pivot adapter, e.g., a 2-
layer feedforward network with ReLU activations,
but the performance was not better than just a lin-
ear adapter.

5.2 Cross-lingual Encoder

newstest2013

Trained on Input BLEU [%] TER [%]

Monolingual
Clean 15.7 77.7
Noisy 17.5 73.6

Pivot side of parallel
Clean 15.9 77.3
Noisy 18.0 72.7

Table 4: Cross-lingual encoder variations (French→
German). All results are in the zero-shot setting with
step-wise pre-training.

Table 4 verifies that the noisy input in autoen-
coding is indeed beneficial to our cross-lingual

encoder. It improves the final translation perfor-
mance by maximum +2.1% BLEU, compared to
using the copying autoencoding objective.

As the training data for autoencoding, we also
compare between purely monolingual data and the
pivot side of the source-pivot parallel data. By
the latter, one can expect a stronger signal for a
joint encoder representation space, since two dif-
ferent inputs (in source/pivot languages) are used
to produce the exactly same output sentence (in
pivot language). The results also tell that there are
slight but consistent improvements by using the
pivot part of the parallel data.

Again, we performed these comparisons in the
other test set and German→Czech, observing the
same tendency in results.

5.3 Zero-resource/Zero-shot Scenarios

If we do not have an access to any source-
target parallel data (zero-resource), non-English
language pairs have two options for still building
a working NMT system, given source-English and
target-English parallel data:

• Zero-shot: Perform source→target transla-
tion using models which have not seen any
source-target parallel sentences, e.g., multi-
lingual models or pivoting (Section 2.1).

• Pivot-based synthetic data: Generate syn-
thetic source-target parallel data using
source↔English and target↔English models
(Section 2.2). Use this data to train a model
for source→target.

Table 5 shows how our pre-trained models
perform in zero-resource scenarios with the two
options. Note that, unlike Table 2, the mul-
tilingual baselines exclude source→target and
target→source directions. First of all, plain trans-
fer, where the encoder and the decoder are pre-
trained separately, is poor in zero-shot scenarios.
It simply fails to connect different representation
spaces of the pre-trained encoder and decoder. In
our experiments, neither pivot adapter nor cross-
lingual encoder could enhance the zero-shot trans-
lation of plain transfer.

Step-wise pre-training solves this problem by
changing the decoder pre-training to familiarize
itself with representations from an already pre-
trained encoder. It achieves zero-shot performance
of 11.5% BLEU in French→German and 6.5%
BLEU in German→Czech (newstest2013), while
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French→German German→Czech

newstest2012 newstest2013 newstest2012 newstest2013

BLEU [%] TER [%] BLEU [%] TER [%] BLEU [%] TER [%] BLEU [%] TER [%]

Multilingual many-to-many 14.1 79.1 14.6 79.1 5.9 - 6.3 99.8
Pivot translation 16.6 72.4 17.9 72.5 16.4 74.5 19.5 70.1
Teacher-student 18.7 70.3 20.7 69.5 16.0 75.0 18.5 70.9

Plain transfer 0.1 - 0.2 - 0.1 - 0.1 -
Step-wise pre-training 11.0 81.6 11.5 82.5 6.0 92.1 6.5 87.8
+ Cross-lingual encoder 17.3 72.1 18.0 72.7 14.1 76.8 16.5 73.5

+ Teacher-student 19.3 69.7 20.9 69.3 16.5 74.6 19.1 70.2

Table 5: Zero-resource results. Except those with the teacher-student, the results are all in the zero-shot setting,
i.e., the model is not trained on any source-target parallel data. ‘-’ indicates a TER score over 100%.

showing comparable or better fine-tuned perfor-
mance against plain transfer (see also Table 2).

With the pre-trained cross-lingual encoder,
the zero-shot performance of step-wise pre-
training is superior to that of pivot translation in
French→German with only a single model. It is
worse than pivot translation in German→Czech.
We think that the data size of pivot-target is
critical in pivot translation; relatively huge data
for English→Czech make the pivot translation
stronger. Note again that, nevertheless, pivoting
(second row) is very poor in efficiency since it per-
forms decoding twice with the individual models.

For the second option (pivot-based synthetic
data), we compare our methods against the
sentence-level beam search version of the teacher-
student framework (Chen et al., 2017), with which
we generated 10M synthetic parallel sentence
pairs. We also tried other variants of Chen et al.
(2017), e.g., N -best hypotheses with weights, but
there were no consistent improvements.

Due to enormous bilingual signals, the model
trained with the teacher-student synthetic data out-
performs pivot translation. If tuned with the same
synthetic data, our pre-trained model performs
even better (last row), achieving the best zero-
resource results on three of the four test sets.

We also evaluate our best German→Czech
zero-resource model on newstest2019 and com-
pare it with the participants of the WMT 2019
unsupervised news translation task. Ours yield
17.2% BLEU, which is much better than the best
single unsupervised system of the winner of the
task (15.5%) (Marie et al., 2019). We argue that, if
one has enough source-English and English-target
parallel data for a non-English language pair, it

is more encouraged to adopt pivot-based transfer
learning than unsupervised MT — even if there is
no source-target parallel data. In this case, unsu-
pervised MT unnecessarily restricts the data con-
dition to using only monolingual data and its high
computational cost does not pay off; simple pivot-
based pre-training steps are more efficient and ef-
fective.

5.4 Large-scale Results

We also study the effect of pivot-based transfer
learning in more data-rich scenarios: 1) with large
synthetic source-target data (German→Czech),
and 2) with larger real source-target data in combi-
nation with the synthetic data (French→German).
We generated synthetic parallel data using pivot-
based back-translation (Bertoldi et al., 2008): 5M
sentence pairs for German→Czech and 9.1M sen-
tence pairs for French→German. For the second
scenario, we also prepared 2.3M more lines of
French→German real parallel data from Europarl
v7 and Common Crawl corpora.

Table 6 shows our transfer learning results
fine-tuned with a combination of given parallel
data and generated synthetic parallel data. The
real source-target parallel data are oversampled to
make the ratio of real and synthetic data to be 1:2.
As expected, the direct source→target model can
be improved considerably by training with large
synthetic data.

Plain pivot-based transfer outperforms the syn-
thetic data baseline by up to +1.9% BLEU or -3.3%
TER. However, the pivot adapter or cross-lingual
encoder gives marginal or inconsistent improve-
ments over the plain transfer. We suppose that the
entire model can be tuned sufficiently well without
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French→German German→Czech

newstest2012 newstest2013 newstest2012 newstest2013

BLEU [%] TER [%] BLEU [%] TER [%] BLEU [%] TER [%] BLEU [%] TER [%]

Direct source→target 20.1 69.8 22.3 68.7 11.1 81.1 12.8 77.7
+ Synthetic data 21.1 68.2 22.6 68.1 15.7 76.5 18.5 72.0

Plain transfer 21.8 67.6 23.1 67.5 17.6 73.2 20.3 68.7
+ Pivot adapter 21.8 67.6 23.1 67.6 17.6 73.0 20.9 68.3
+ Cross-lingual encoder 21.9 67.7 23.4 67.4 17.5 73.5 20.3 68.7

+ Pivot adapter 22.1 67.5 23.3 67.5 17.5 73.2 20.6 68.5
Step-wise pre-training 21.8 67.8 23.0 67.8 17.3 73.6 20.0 69.2

+ Cross-lingual encoder 21.9 67.6 23.4 67.4 17.5 73.1 20.5 68.6

Table 6: Results fine-tuned with a combination of source-target parallel data and large synthetic data.
French→German task used larger real parallel data than Table 2.

additional adapter layers or a well-curated training
process, once we have a large source-target paral-
lel corpus for fine-tuning.

6 Conclusion

In this paper, we propose three effective tech-
niques for transfer learning using pivot-based par-
allel data. The principle is to pre-train NMT mod-
els with source-pivot and pivot-target parallel data
and transfer the source encoder and the target de-
coder. To resolve the input/output discrepancy of
the pre-trained encoder and decoder, we 1) consec-
utively pre-train the model for source→pivot and
pivot→target, 2) append an additional layer after
the source encoder which adapts the encoder out-
put to the pivot language space, or 3) train a cross-
lingual encoder over source and pivot languages.

Our methods are suitable for most of the non-
English language pairs with lots of parallel data
involving English. Experiments in WMT 2019
French→German and German→Czech tasks show
that our methods significantly improve the fi-
nal source→target translation performance, out-
performing multilingual models by up to +2.6%
BLEU. The methods are applicable also to zero-
resource language pairs, showing a strong perfor-
mance in the zero-shot setting or with pivot-based
synthetic data. We claim that our methods expand
the advances in NMT to many more non-English
language pairs that are not yet studied well.

Future work will be zero-shot translation with-
out step-wise pre-training, i.e., combining individ-
ually pre-trained encoders and decoders freely for
a fast development of NMT systems for a new
non-English language pair.
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