@inproceedings{song-park-2019-korean,
title = "{K}orean Morphological Analysis with Tied Sequence-to-Sequence Multi-Task Model",
author = "Song, Hyun-Je and
Park, Seong-Bae",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1150",
doi = "10.18653/v1/D19-1150",
pages = "1436--1441",
abstract = "Korean morphological analysis has been considered as a sequence of morpheme processing and POS tagging. Thus, a pipeline model of the tasks has been adopted widely by previous studies. However, the model has a problem that it cannot utilize interactions among the tasks. This paper formulates Korean morphological analysis as a combination of the tasks and presents a tied sequence-to-sequence multi-task model for training the two tasks simultaneously without any explicit regularization. The experiments prove the proposed model achieves the state-of-the-art performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-park-2019-korean">
<titleInfo>
<title>Korean Morphological Analysis with Tied Sequence-to-Sequence Multi-Task Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hyun-Je</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seong-Bae</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Korean morphological analysis has been considered as a sequence of morpheme processing and POS tagging. Thus, a pipeline model of the tasks has been adopted widely by previous studies. However, the model has a problem that it cannot utilize interactions among the tasks. This paper formulates Korean morphological analysis as a combination of the tasks and presents a tied sequence-to-sequence multi-task model for training the two tasks simultaneously without any explicit regularization. The experiments prove the proposed model achieves the state-of-the-art performance.</abstract>
<identifier type="citekey">song-park-2019-korean</identifier>
<identifier type="doi">10.18653/v1/D19-1150</identifier>
<location>
<url>https://aclanthology.org/D19-1150</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>1436</start>
<end>1441</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Korean Morphological Analysis with Tied Sequence-to-Sequence Multi-Task Model
%A Song, Hyun-Je
%A Park, Seong-Bae
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F song-park-2019-korean
%X Korean morphological analysis has been considered as a sequence of morpheme processing and POS tagging. Thus, a pipeline model of the tasks has been adopted widely by previous studies. However, the model has a problem that it cannot utilize interactions among the tasks. This paper formulates Korean morphological analysis as a combination of the tasks and presents a tied sequence-to-sequence multi-task model for training the two tasks simultaneously without any explicit regularization. The experiments prove the proposed model achieves the state-of-the-art performance.
%R 10.18653/v1/D19-1150
%U https://aclanthology.org/D19-1150
%U https://doi.org/10.18653/v1/D19-1150
%P 1436-1441
Markdown (Informal)
[Korean Morphological Analysis with Tied Sequence-to-Sequence Multi-Task Model](https://aclanthology.org/D19-1150) (Song & Park, EMNLP-IJCNLP 2019)
ACL