@inproceedings{strzyz-etal-2019-towards,
title = "Towards Making a Dependency Parser See",
author = "Strzyz, Michalina and
Vilares, David and
G{\'o}mez-Rodr{\'i}guez, Carlos",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1160/",
doi = "10.18653/v1/D19-1160",
pages = "1500--1506",
abstract = "We explore whether it is possible to leverage eye-tracking data in an RNN dependency parser (for English) when such information is only available during training - i.e. no aggregated or token-level gaze features are used at inference time. To do so, we train a multitask learning model that parses sentences as sequence labeling and leverages gaze features as auxiliary tasks. Our method also learns to train from disjoint datasets, i.e. it can be used to test whether already collected gaze features are useful to improve the performance on new non-gazed annotated treebanks. Accuracy gains are modest but positive, showing the feasibility of the approach. It can serve as a first step towards architectures that can better leverage eye-tracking data or other complementary information available only for training sentences, possibly leading to improvements in syntactic parsing."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="strzyz-etal-2019-towards">
<titleInfo>
<title>Towards Making a Dependency Parser See</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michalina</namePart>
<namePart type="family">Strzyz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Vilares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Gómez-Rodríguez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore whether it is possible to leverage eye-tracking data in an RNN dependency parser (for English) when such information is only available during training - i.e. no aggregated or token-level gaze features are used at inference time. To do so, we train a multitask learning model that parses sentences as sequence labeling and leverages gaze features as auxiliary tasks. Our method also learns to train from disjoint datasets, i.e. it can be used to test whether already collected gaze features are useful to improve the performance on new non-gazed annotated treebanks. Accuracy gains are modest but positive, showing the feasibility of the approach. It can serve as a first step towards architectures that can better leverage eye-tracking data or other complementary information available only for training sentences, possibly leading to improvements in syntactic parsing.</abstract>
<identifier type="citekey">strzyz-etal-2019-towards</identifier>
<identifier type="doi">10.18653/v1/D19-1160</identifier>
<location>
<url>https://aclanthology.org/D19-1160/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>1500</start>
<end>1506</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Making a Dependency Parser See
%A Strzyz, Michalina
%A Vilares, David
%A Gómez-Rodríguez, Carlos
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F strzyz-etal-2019-towards
%X We explore whether it is possible to leverage eye-tracking data in an RNN dependency parser (for English) when such information is only available during training - i.e. no aggregated or token-level gaze features are used at inference time. To do so, we train a multitask learning model that parses sentences as sequence labeling and leverages gaze features as auxiliary tasks. Our method also learns to train from disjoint datasets, i.e. it can be used to test whether already collected gaze features are useful to improve the performance on new non-gazed annotated treebanks. Accuracy gains are modest but positive, showing the feasibility of the approach. It can serve as a first step towards architectures that can better leverage eye-tracking data or other complementary information available only for training sentences, possibly leading to improvements in syntactic parsing.
%R 10.18653/v1/D19-1160
%U https://aclanthology.org/D19-1160/
%U https://doi.org/10.18653/v1/D19-1160
%P 1500-1506
Markdown (Informal)
[Towards Making a Dependency Parser See](https://aclanthology.org/D19-1160/) (Strzyz et al., EMNLP-IJCNLP 2019)
ACL
- Michalina Strzyz, David Vilares, and Carlos Gómez-Rodríguez. 2019. Towards Making a Dependency Parser See. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1500–1506, Hong Kong, China. Association for Computational Linguistics.