
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 1538–1548,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

1538

Simple, Scalable Adaptation for Neural Machine Translation

Ankur Bapna Orhan Firat
Google AI

{ankurbpn,orhanf}@google.com

Abstract

Fine-tuning pre-trained Neural Machine
Translation (NMT) models is the dominant
approach for adapting to new languages
and domains. However, fine-tuning requires
adapting and maintaining a separate model
for each target task. We propose a simple yet
efficient approach for adaptation in NMT. Our
proposed approach consists of injecting tiny
task specific adapter layers into a pre-trained
model. These lightweight adapters, with just
a small fraction of the original model size,
adapt the model to multiple individual tasks
simultaneously.

We evaluate our approach on two tasks: (i)
Domain Adaptation and (ii) Massively Multi-
lingual NMT. Experiments on domain adapta-
tion demonstrate that our proposed approach
is on par with full fine-tuning on various do-
mains, dataset sizes and model capacities. On
a massively multilingual dataset of 103 lan-
guages, our adaptation approach bridges the
gap between individual bilingual models and
one massively multilingual model for most
language pairs, paving the way towards uni-
versal machine translation.

1 Introduction

Recent developments in deep learning have led to
significantly improved quality on Neural Machine
Translation (NMT) (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al.,
2014; Vaswani et al., 2017). While NMT per-
formance on sentence level translation for high
resource languages seems to be dramatically im-
proved (Wu et al., 2016; Hassan et al., 2018), per-
formance on out-of-domain data or low resource
languages, still remains pretty poor (Duh et al.,
2013; Koehn and Knowles, 2017; Farajian et al.,
2017; Dong et al., 2015; Zoph et al., 2016). This
has generated significant interest in adaptation ap-
proaches, that can leverage the huge amounts of

parallel data available for high resource languages,
to improve translation performance on low re-
source tasks. In this work we focus on two adap-
tation tasks: (i) Domain Adaptation, to improve
the performance of in-domain translation by lever-
aging out-of-domain datasets (Luong and Man-
ning, 2015; Freitag and Al-Onaizan, 2016), and
(ii) Multilingual NMT, to improve the translation
quality on low resource languages via co-training
with similar languages (Dong et al., 2015; Firat
et al., 2016; Johnson et al., 2016; Zoph et al., 2016;
Neubig and Hu, 2018; Aharoni et al., 2019; Ari-
vazhagan et al., 2019).

While several approaches have been explored
in literature (Chu and Wang, 2018), full fine-
tuning of model parameters remains the dominant
approach for adapting to new domains and lan-
guages (Luong and Manning, 2015; Neubig and
Hu, 2018). However, fine-tuning requires training
and maintaining a separate model for every lan-
guage, for every domain. As the number of lan-
guages and domains grow, training, maintaining
and serving a separate model for every task be-
comes infeasible. This is further exacerbated by
the increasing model capacity of state-of-the-art
NMT models (Shazeer et al., 2018; Bapna et al.,
2018; Huang et al., 2018); full fine-tuning is just
too parameter inefficient. In addition to the grow-
ing number of models, fine-tuning requires very
careful hyper-parameter tuning (eg. learning rate,
regularization knobs etc.) during adaptation, and
is prone to rapid over-fitting (Sennrich et al., 2016;
Miceli Barone et al., 2017). This sensitivity to
hyper-parameters and over-fitting to the adaptation
corpus become worse in the setting of high capac-
ity models.

These weaknesses beckon the need for
parameter-efficient, scalable and hyper-parameter
insensitive approaches for adaptation. The ideal
adaptation approach should also offer the flexi-
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Figure 1: Diagrams depicting (i) Left: the proposed layout of a Transformer enhanced with language specific
adapters (ii) Right: the architecture of each residual adapter layer. While the figure depicts use of adapters for
multilingual NMT, the same formulation can be used for domain adaptation.

bility to adapt to tasks of varying complexity and
adaptation corpus sizes, within a single model.

In this work we propose using light-weight
adapter layers, which are transplanted between the
layers of a pre-trained network and fine-tuned on
the adaptation corpus. Adapting only the light-
weight layers enables our approach to be param-
eter efficient, and eases the scalability of the ap-
proach to large models. The capacity of these
adapters can be adjusted to match the requirements
of the target task, making them suitable for a va-
riety of adaptation tasks. By separating the pa-
rameters of the original network and each adapta-
tion task, our approach circumvents catastrophic
interference (McCloskey and Cohen, 1989) with
the original model parameters, and allows us to si-
multaneously adapt a single model to multiple do-
mains and languages, while retaining the quality
on the source languages and domains.

We make three major contributions in this work:
(i) we propose a formulation of adapter layers
for NMT adaptation that enables us to tune their
capacity according to the target task complex-
ity and corpus size, (ii) we evaluate our ap-
proach on domain adaptation, and demonstrate
that light-weight adapters match the performance
of full fine-tuning based adaptation at a fraction
of the per-domain parameter cost, and (iii) we use
adapters to train a massively multilingual model
on 103 languages, and demonstrate that it is pos-
sible to train a single model that significantly im-
proves transfer performance on low resource lan-

guages, without huge regression on high resource
language pairs.

By demonstrating the effectiveness of adapters
on domain adaptation and massively multilingual
translation, we make progress towards a flexible
universal translation model for all languages and
domains.

2 Related Work

Several approaches have been proposed in recent
literature that try to address the shortcomings of
full fine-tuning when applied to domain adaptation
(Chu and Wang, 2018). Michel and Neubig (2018)
proposed a space efficient approach to adaptation
that introduces domain-specific biases to the out-
put vocabulary, enabling extreme personalization
in settings where small amounts of data are avail-
able for a lot of different domains. Thompson
et al. (2018) fine-tune selected components of the
base model architecture, in order to determine how
much fine-tuning each component contributes to
the final adaptation performance. Wuebker et al.
(2018) propose introducing sparse offsets from the
base model parameters for every domain, reduc-
ing the memory complexity of loading and unload-
ing domain specific parameters in real world set-
tings. Bapna and Firat (2019) train the base model
to utilize neighboring samples from the training
set, enabling the model to adapt to new domains
without the need for additional parameter updates.
Learning Hidden Unit Contribution (LHUC) (Vi-
lar, 2018) is perhaps closest to our work in spirit.
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They introduce domain specific gates that con-
trol the contribution of hidden units feeding into
the next layer. However, they introduce a lim-
ited amount of per-domain capacity which doesn’t
scale well when a lot of domain specific data is
available.

Residual Adapters were first introduced for
adapting vision models in Rebuffi et al. (2017), but
their formulation used a single projection layer,
without any tunable hyper-parameters that could
be used to adjust capacity based on the target
domain. Houlsby et al. (2019) utilized a new
formulation of adapters to adapt BERT (Devlin
et al., 2018) to multiple tasks simultaneously. Our
formulation of adapters is motivated by theirs,
but differs in a few respects. Houlsby et al.
(2019) introduce adapters after every sub-layer
(self-attention, feed-forward) within a transformer
layer, and re-train existing layer normalization pa-
rameters for every new domain. We simplify this
formulation by leaving the parameters frozen, and
introducing new layer normalization parameters
for every task, essentially mimic-ing the structure
of the transformer feed-forward layer.

3 Approach

Our approach consists of two phases: (i) Train-
ing a generic base model, and (ii) adapting it
to new tasks with added small network modules.
We first take a standard NMT model which is
trained on a large source corpus. Following con-
vergence,1 all model parameters are frozen, pre-
serving the information learned during this pre-
training phase. Next, per-task light-weight adapter
layers (see Fig. 1 right pane) are introduced after
every layer in the encoder and the decoder (see
Fig. 1 left pane). We fine-tune the parameters of
these task-specific adapters on the adaptation cor-
pus. This procedure can be followed for every ad-
ditional task, allowing us to train a single model
for all tasks simultaneously, with a small set of
task-specific adapters.

Adapter Modules Our design principles for
adapter modules are simplicity and flexibility. We
propose a simple single hidden-layer feed-forward
network formulation for adapters, with a non-
linear activation function between the two projec-
tion layers. The inner dimension of these two pro-

1We leave the methodology for defining convergence task
specific, e.g. early stopping on validation set accuracy or
number of training steps.

jections is the only knob to tune. This allows us
to adjust the capacity of the adapter module eas-
ily, depending on the complexity of the target task
or domain. Additionally, we normalize the in-
put of the adapters, in order to make the module
plug-able into any part of the base network, ir-
respective of the variations in the activation pat-
terns/distributions. This parametrized normaliza-
tion layer allows the module to learn the activa-
tion pattern of the layer it’s injected into. Finally,
to allow the adapter module to represent a no-op if
necessary, we wrap it with a residual connection.

Formulation Let zi be the output of the i-th
layer, of dimension d. We first apply layer-
normalization (Ba et al., 2016) to the inputs of the
adapter corresponding to task T .

z̃Ti = LNT (zi). (1)

This is followed by a projection layer of dimen-
sion b. The dimension of the projection can be
tuned based on the task complexity and the size
of the adaptation corpus. This now allows us to
make it a bottleneck layer for compression, or
over-parametrize it with a dimension larger than
the input dimension.2

hTi = relu(W T
bdz̃

T
i ). (2)

Lastly, the inner representation is projection back
to the input dimension d, and combined with a
residual connection (He et al., 2015):

xTi = W T
dbh

T
i + zi. (3)

Our proposed formulation for adapters, and
their incorporation into Transformers (Vaswani
et al., 2017) is illustrated in Figure 1. This self-
contained adapter module can be injected between
any two layers of the network, without disrupting
the original operation.

4 Domain Adaptation

We first compare the adaptation performance of
the light-weight residual adapters against full fine-
tuning and LHUC (Vilar, 2018) on a large scale
English-French domain adaptation task.

2Following the wiring choices of Transformer feed-
forward network (Vaswani et al., 2017).
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4.1 Dataset

We use the WMT En-Fr training set (36M pairs) as
our out-of-domain (source) training corpus. NMT
models trained on WMT are then adapted to the
IWSLT’15 En-Fr corpus, consisting of 237k sen-
tence pairs. We also evaluate adaptation perfor-
mance on the JRC-Acquis dataset 3, which is an
extremely narrow domain dataset containing 797k
sentence pairs in the training split. For IWSLT,
we use the test corpora from 2012-14 for valida-
tion, and the test corpus from 2015 as the test set.
For JRC-Acquis the test and validation set contain
6574 and 5121 sentence pairs respectively. We
also evaluate the translation performance of the
non-adapted base model on newstest-2014.

Dataset Base FT LHUC Adap.
WMT’14 42.80 - - -
IWSLT’15 41.33 44.59 43.33 44.63
JRC 54.60 64.13 57.10 63.48

Table 1: Domain adaptation performance with differ-
ent adaptation strategies. Base refers to the baseline
NMT model trained on the WMT’14 En-Fr training
corpus. FT refers to the fine-tuning upper bound, adapt-
ing all the model parameters by incrementally train-
ing on in-domain training data. LHUC adds addi-
tional task-specific gating parameters to the pre-trained
model, which are trained on the in-domain data, as de-
scribed in Vilar (2018). Adap. is the proposed adap-
tation approach, adding domain specific adapter layers
trained on the in-domain training corpus.

4.2 Using Adapters for Domain Adaptation

When using adapters for domain adaptation, we
follow the following two step approach:

• Pre-training: Pre-train the NMT model on a
large open-domain corpus. Freeze all the pa-
rameters of this pre-trained model.

• Adaptation: Inject a set of domain-specific
adapter layers for every target domain. These
adapters are then fine-tuned to maximize
performance on the corresponding domains.
This step can be applied any time a new do-
main is added to the model.

As discussed in Section 5.2, we follow a slightly
different approach when using adapters for multi-
lingual NMT.

3http://opus.nlpl.eu/JRC-Acquis.php

Figure 2: IWSLT Adaptation performance vs adapter
capacity in terms of percentage of the base model’s ca-
pacity. The range of model capacity plotted here cor-
responds to adapter bottleneck dimensions of 4, 8...256
respectively.

4.3 Models and Hyper-parameters

We use a larger version of Transformer Big con-
taining 375M parameters as our base model. Our
model is identical to Vaswani et al. (2017), having
6 encoder and decoder layers (12 in total), except
that we use hidden layers of size 8192 instead of
4096, and a learning rate schedule of (3.0, 40K)4,
following Chen et al. (2018).

For full fine-tuning, we continue training on
the in-domain corpus without resetting the op-
timizer accumulators or the learning rate sched-
ule. This allows us to fine-tune gradually, avoid-
ing rapidly over-fitting to the target domain. We
also conducted fine-tuning experiments with SGD,
but report results with the approach described
above, based on better performance on the vali-
dation sets. When adapting with LHUC or light-
weight adapters, we train using the same learn-
ing rate schedule and optimizer used during pre-
training, but restart from the 0-th step, resetting
the optimizer accumulators. BLEU scores are
computed on the checkpoint with the best valida-
tion performance, on tokenized, true-cased output
and references using multi-bleu.perl from Moses.
All our experiments were performed using the
open source Tensorflow Lingvo (Shen et al., 2019)
framework.

4.4 Results and Analysis

The results of our adaptation experiments are doc-
umented in Table 1. On both, IWSLT and JRC-

4(3.0, 40K) schedule is the shorthand for a learning rate
of 3.0, with 40K warm-up steps for the schedule, which is
decayed with the inverse square root of the number of training
steps after warm-up.
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Figure 3: JRC-Acquis Adaptation performance vs
adapter capacity in terms of percentage of the base
model’s capacity. The range of model capacity plot-
ted here corresponds to adapter bottleneck dimensions
of 64, 128...2048 respectively.

Acquis, full model fine-tuning (Full-FT columns
in Table 1) on in-domain data significantly im-
proves translation performance compared to the
base, non-adapted Transformer Big by a huge mar-
gin, 3 BLEU points for IWSLT and 9 BLEU points
for JRC. LHUC also improves performance over
the base model, but lags behind a fully fine-tuned
model for both domains and model capacities.

On IWSLT, adapters match the performance
of the fine-tuning upper bound within error mar-
gins, while adding less than 0.11% of the origi-
nal model parameters. On JRC-Acquis adapters
recover around 90% of fine-tuning improvements
without updating any existing parameters, while
adding around 13.5% additional parameters.

To demonstrate the flexibility of our approach,
we quantify the trade-off between adapter capac-
ity and adaptation performance on both IWSLT
and JRC-Acquis. In Figures 2 and 3, we plot
the adaptation performance on IWSLT and JRC-
Acquis respectively, while varying adapter capac-
ity. On IWSLT, we notice that residual adapters
reach within 0.5 BLEU of the full fine-tuning up-
per bound with just 0.03% of the model capac-
ity, corresponding to a hidden dimension of size
4. By increasing capacity further we were able
to improve over the full fine-tuning baseline by
around 0.5 BLEU. On the other hand, on JRC-
Acquis, adapter capacity had to be increased up
to 13.5% of the total model capacity, correspond-
ing to a hidden dimension of size 2048, before we
were within 0.5 BLEU of the full fine-tuning per-
formance. This highlights a key strength of the
approach: by varying adapter capacity it is possi-

ble to adapt the same model to domains of varying
complexity and amounts of data.

Figure 4: IWSLT Adaptation performance vs frac-
tion of the in-domain training corpus used for adapta-
tion. The blue solid line plots the performance of fine-
tuning. The red dotted line tracks the performance of
LHUC, while the yellow dashed line tracks the perfor-
mance of the proposed residual adapter based approach
with varying amounts of training data.

To evaluate the effectiveness of adapters when
adapting with small in-domain corpora, we fur-
ther compare the performance of adapters with
fine-tuning on varying amounts of training data.
In Figure 6 we plot the adaptation performance
on IWSLT, when using different fractions of the
training corpus for adaptation. While LHUC is
competitive with full fine-tuning and light-weight
adapters for extremely small fractions, the lack of
capacity limits the applicability of the approach
when larger quantities of adaptation data are avail-
able. On the other hand, by tuning the capacity of
adapters to match the requirements for the adap-
tation corpus size, we are able to match and out-
perform fine-tuning on almost all evaluated data-
points.

In order to monitor the learning behavior of
light-weight adapters, we compare the validation
BLEU scores during the course of the fine-tuning
process. Figure 5 illustrates the comparison of the
two approaches, full fine-tuning and light-weight
adapters. We notice that for a reasonably small
adapter size, adapter performance gradually con-
verges to its peak and stays steady, with almost
no over-fitting for a long enough period, easing
final model selection. On the other hand, with
full fine-tuning, optimal model selection becomes
challenging due to rapid over-fitting on the adapta-
tion corpus. This, in fact, can be remedied by care-
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fully tuning the learning rate (and/or batch size)
during adaptation, but is not trivial and needs to
be done individually for every different domain,
model and corpus size, favoring the simplicity of
our proposed approach.

Figure 5: IWSLT dev performance vs number of
in-domain adaptation steps when adapting with fine-
tuning vs adapters.

5 Massively Multilingual Machine
Translation

To stress test our adapters based approach, we
apply this to a massively multilingual translation
task on a real world dataset (Arivazhagan et al.,
2019). Most previous literature in multilingual
NMT focuses on improving the performance of
low resource languages (Zoph et al., 2016; Firat
et al., 2016; Neubig and Hu, 2018), often ignoring
the source language performance of the adapted
model. However, the goal of our work is to en-
able training a single model for all language pairs,
in order to get benefits of transfer on low resource
language pairs, without losing performance in the
high resource setting.

5.1 Dataset

To highlight the flexibility of an adapters based ap-
proach, we study multilingual NMT on a massive
scale, using a corpus generated by crawling and
extracting parallel sentences from the web. Our
corpus contains parallel documents for 102 lan-
guages, to and from English, containing a total
of 25 billion sentence pairs (Arivazhagan et al.,
2019).5 The number of parallel sentences per lan-
guage in our corpus ranges from around 10s of

5Limited to approximately this amount for experimenta-
tion.

thousands to almost 2 billion. Figure 6 illustrates
the data distribution across languages for all 102
languages studied in this paper.

5.2 Using Adapters for multilingual NMT

Our approach to using adapters for multilingual
NMT diverges from domain adaptation, owing to
the differences in the two tasks.

In the domain adaptation setting, while the in-
put and output distributions of the adaptation do-
main might differ from that of the base, the set
of inputs and outputs is pretty much the same. In
mathematical terms, both the base and adaptation
domain distributions, DS and DT respectively, are
defined on the same support set {X,Y }.

On the other hand, in multilingual NMT, the
support sets of different language pairs have very
little overlap. In this setting, adapting a model to
a new language pair without learning the embed-
dings and softmax parameters (which correspond
to the input and output support sets) would be an
extremely difficult task. Following the approach
used for domain adaptation in Section 4.2 might
not be possible here. We modify our approach to
expand the input-output distribution of our initial
pre-trained model to all language pairs we are in-
terested in supporting, i.e. we can’t add any new
language pairs to the model during adaptation, but
we use the adaptation stage to improve perfor-
mance on languages learnt during pre-training.

For multilingual NMT, we follow the following
two step approach:

• Global training: Train a fully shared model
on all language pairs, with the goal of maxi-
mizing transfer to low resource languages.

• Refinement: Fine-tuning language pair spe-
cific adapters for all high resource languages,
to recover lost performance during step 1.
This step can only be applied for language
pairs learned during global training.

5.3 Models and Hyper-parameters

We first train dedicated bilingual models on all
language pairs to ground our multilingual analy-
ses. We perform all our experiments with variants
of the Transformer architecture (Vaswani et al.,
2017). For most bilingual experiments, we use
a larger version of Transformer Big containing
375M parameters (Chen et al., 2018), and a shared
source-target sentence-piece model (SPM) (Kudo
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Figure 6: Per language pair data distribution of the dataset used for our multilingual experiments (for 102 lan-
guages, 204 language pairs to and from English). The y-axis depicts the number of training examples available per
language pair on a logarithmic scale. Dataset sizes range from the order of 104 for the lowest resource language
pairs to the order of 109 for the largest.

and Richardson, 2018) vocabulary with 32k to-
kens. We tune different values of dropout (Srivas-
tava et al., 2014), depending on the dataset size
for each language pair. For most medium and
low resource languages we also experiment with
Transformer Base. All our models are trained with
Adafactor (Shazeer and Stern, 2018) with momen-
tum factorization, a learning rate schedule of (3.0,
40K), and a per-parameter norm clipping thresh-
old of 1.0. For Transformer Base models, we use
a learning rate schedule of (2.0, 8K). BLEU scores
are computed on the checkpoint with the best val-
idation performance, on true-cased output and ref-
erences.6

We now describe our approach for training the
multilingual models. Due to the large imbalance
in our training dataset (Figure 6), we first design
a sampling strategy to simultaneously train a sin-
gle model on all 204 language pairs. Sampling
directly from the data distribution results in good
performance on high resource languages, but low
resource languages get starved. Sampling equally
from all language pairs results in huge boost in
low resource translation performance, but high re-
source languages perform significantly worse than
their bilingual baselines.

To balance between high and low resource lan-
guage pairs, we use a temperature based sampling
strategy (Arivazhagan et al., 2019). For a given

6We used an in-house implementation of mteval-v13a.pl
from Moses to evaluate BLEU scores for our multilingual ex-
periments.

language pair, l12, let Dl12 be the size of the avail-
able parallel corpus. Then if we sample from the
union of the datasets, the probability of the sample
being from language pair l12 is pl12 =

Dl12
Σl12

Dl12
.

We set the probability of our sampled distribution

to be proportional to p
1
T
l12

, where T is the sampling
temperature. Now, T = 1 corresponds to true data
distribution and T = 100 corresponds to an (al-
most) equal number of samples for each language.
We use T = 5 for our multilingual model.

We train a single Transformer Big simultane-
ously on all 204 language pairs (102 languages to
and from English), with the same hyper-parameter
settings as the bilingual model. However, we use
a shared SPM vocab with 64K tokens, generated
using the same sampling distribution (T = 5)
used during training. We additionally use char-
acter coverage of 0.999995 to ensure our vocab
contains most of the alphabets for all 103 lan-
guages. Please refer (Arivazhagan et al., 2019) for
additional training details for the base multilingual
model.

Following global pre-training on all language
pairs, we inject and fine-tune language pair spe-
cific adapters. The fine-tuning stage is performed
separately for each language pair to reduce the
device memory needed for the training process.
The fine-tuned adapters can then be combined to-
gether into a single model after this stage. For
fine-tuning, we use the same hyper-parameter used
during global pre-training, but reset our optimizer
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Figure 7: Trendlines depicting translation performance improvement in multilingual models with residual adapters.
From left to right, languages are arranged in decreasing order of available training data. y-axis depicts the BLEU
score relative to the bilingual baseline trained on the corresponding language pair. The plots correspond to the
following models: (1.) Red: Multilingual model trained with sampling temperature, T = 5 (2.) Blue: Multilingual
model + Small adapters, b = 2048 (3.) Pink: Multilingual model + Large adapters, b = 4096.
Note: For adapter experiments, we choose the best performance between b = 0, b = 2048 and b = 4096.

accumulators and restart from step 0. For our
experiments we use the same bottle-neck dimen-
sion, b = 2048, for all language pairs. This was
meant to reduce the number of experiments given
the large number of language pairs in our setup.
For language pairs that were worse than their bilin-
gual models after adding adapters with b = 2048,
we re-run fine-tuning with larger adapters, with
b = 4096. In an ideal setting, the bottle-neck
could be larger for the highest resource languages
and b = 0 (no adapters) for the smallest languages.

5.4 Results and Analysis

We plot the translation quality on different lan-
guage pairs in Figure 7. As we can see, the multi-

lingual model significantly out-performs the bilin-
gual baselines in the extremely low resource set-
ting. These gains are even more amplified when
translating into English, agreeing with previous
work in multilingual NMT (Neubig and Hu, 2018;
Aharoni et al., 2019). However, owing to the
huge training corpus, we observe significant per-
formance deterioration in the high resource lan-
guages. We attribute this deterioration to two fac-
tors: (i) Languages compete for capacity given the
limited model size, and (ii) The model converges
much before it trains on significant portions of the
high resource datasets.

As is apparent from Figure 7, performance on
high and medium resource languages improves
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by huge margins after the second stage of train-
ing (adapter based refinement). Fine-tuning with
adapters allows the model to see larger portions
of the training data for high resource languages,
and converges faster than training a model from
scratch since it only updates a very small frac-
tion of the model parameters (for most language
pairs, the second stage converges within 20-50k
steps, depending on the corpus size). For high re-
source languages, especially when translating into
English, we observe further performance improve-
ments when increasing adapter size. This again
highlights the flexibility of adapters, it is possible
to adjust the adapter capacity to match the com-
plexity and resource size of the target task.

While adapters help us bridge most of the gap
between bilingual and multilingual models, we
still observe a minor regression for high resource
languages translating into English, compared to
the bilingual baselines. Although it might be pos-
sible to reduce this gap further by increasing the
adapter size beyond b = 4096, there might be
more efficient ways to approach this problem, in-
cluding more expressive network architectures for
adapters, joint fine-tuning of adapters and global
model parameters, etc. However, we leave these
studies to future work.

6 Conclusion

In this work, we proposed light-weight adapters,
a simple yet efficient way for adapting large scale
neural machine translation models. Our proposed
approach, by injecting small task-specific adapter
layers between the frozen base model layers dur-
ing adaptation, enables the final network to adapt
to multiple target tasks simultaneously, without
forgetting the original parameters.

We evaluate light-weight adapters on two differ-
ent adaptation tasks, domain adaptation and mul-
tilingual NMT. Experiments support the flexibil-
ity and scalability of light-weight adapters, (i)
yielding comparable or better results when com-
pared with the standard full fine-tuning or bilin-
gual baselines, (ii) without the need for any hyper-
parameter tuning across varying adaptation dataset
sizes and model capacities.

With a large set of globally shared parame-
ters and small interspersed task-specific layers,
adapters allow us to train and adapt a single model
for a huge number of languages and domains.
We hope that this work would motivate further

research into massively multitask and universal
translation models.
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