@inproceedings{dankers-etal-2019-modelling,
title = "Modelling the interplay of metaphor and emotion through multitask learning",
author = "Dankers, Verna and
Rei, Marek and
Lewis, Martha and
Shutova, Ekaterina",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1227/",
doi = "10.18653/v1/D19-1227",
pages = "2218--2229",
abstract = "Metaphors allow us to convey emotion by connecting physical experiences and abstract concepts. The results of previous research in linguistics and psychology suggest that metaphorical phrases tend to be more emotionally evocative than their literal counterparts. In this paper, we investigate the relationship between metaphor and emotion within a computational framework, by proposing the first joint model of these phenomena. We experiment with several multitask learning architectures for this purpose, involving both hard and soft parameter sharing. Our results demonstrate that metaphor identification and emotion prediction mutually benefit from joint learning and our models advance the state of the art in both of these tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dankers-etal-2019-modelling">
<titleInfo>
<title>Modelling the interplay of metaphor and emotion through multitask learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Verna</namePart>
<namePart type="family">Dankers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Rei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Lewis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Metaphors allow us to convey emotion by connecting physical experiences and abstract concepts. The results of previous research in linguistics and psychology suggest that metaphorical phrases tend to be more emotionally evocative than their literal counterparts. In this paper, we investigate the relationship between metaphor and emotion within a computational framework, by proposing the first joint model of these phenomena. We experiment with several multitask learning architectures for this purpose, involving both hard and soft parameter sharing. Our results demonstrate that metaphor identification and emotion prediction mutually benefit from joint learning and our models advance the state of the art in both of these tasks.</abstract>
<identifier type="citekey">dankers-etal-2019-modelling</identifier>
<identifier type="doi">10.18653/v1/D19-1227</identifier>
<location>
<url>https://aclanthology.org/D19-1227/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2218</start>
<end>2229</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modelling the interplay of metaphor and emotion through multitask learning
%A Dankers, Verna
%A Rei, Marek
%A Lewis, Martha
%A Shutova, Ekaterina
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F dankers-etal-2019-modelling
%X Metaphors allow us to convey emotion by connecting physical experiences and abstract concepts. The results of previous research in linguistics and psychology suggest that metaphorical phrases tend to be more emotionally evocative than their literal counterparts. In this paper, we investigate the relationship between metaphor and emotion within a computational framework, by proposing the first joint model of these phenomena. We experiment with several multitask learning architectures for this purpose, involving both hard and soft parameter sharing. Our results demonstrate that metaphor identification and emotion prediction mutually benefit from joint learning and our models advance the state of the art in both of these tasks.
%R 10.18653/v1/D19-1227
%U https://aclanthology.org/D19-1227/
%U https://doi.org/10.18653/v1/D19-1227
%P 2218-2229
Markdown (Informal)
[Modelling the interplay of metaphor and emotion through multitask learning](https://aclanthology.org/D19-1227/) (Dankers et al., EMNLP-IJCNLP 2019)
ACL
- Verna Dankers, Marek Rei, Martha Lewis, and Ekaterina Shutova. 2019. Modelling the interplay of metaphor and emotion through multitask learning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2218–2229, Hong Kong, China. Association for Computational Linguistics.