@inproceedings{shen-etal-2019-negative,
title = "Negative Focus Detection via Contextual Attention Mechanism",
author = "Shen, Longxiang and
Zou, Bowei and
Hong, Yu and
Zhou, Guodong and
Zhu, Qiaoming and
Aw, AiTi",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1230/",
doi = "10.18653/v1/D19-1230",
pages = "2251--2261",
abstract = "Negation is a universal but complicated linguistic phenomenon, which has received considerable attention from the NLP community over the last decade, since a negated statement often carries both an explicit negative focus and implicit positive meanings. For the sake of understanding a negated statement, it is critical to precisely detect the negative focus in context. However, how to capture contextual information for negative focus detection is still an open challenge. To well address this, we come up with an attention-based neural network to model contextual information. In particular, we introduce a framework which consists of a Bidirectional Long Short-Term Memory (BiLSTM) neural network and a Conditional Random Fields (CRF) layer to effectively encode the order information and the long-range context dependency in a sentence. Moreover, we design two types of attention mechanisms, word-level contextual attention and topic-level contextual attention, to take advantage of contextual information across sentences from both the word perspective and the topic perspective, respectively. Experimental results on the SEM`12 shared task corpus show that our approach achieves the best performance on negative focus detection, yielding an absolute improvement of 2.11{\%} over the state-of-the-art. This demonstrates the great effectiveness of the two types of contextual attention mechanisms."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shen-etal-2019-negative">
<titleInfo>
<title>Negative Focus Detection via Contextual Attention Mechanism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Longxiang</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bowei</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guodong</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiaoming</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">AiTi</namePart>
<namePart type="family">Aw</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Negation is a universal but complicated linguistic phenomenon, which has received considerable attention from the NLP community over the last decade, since a negated statement often carries both an explicit negative focus and implicit positive meanings. For the sake of understanding a negated statement, it is critical to precisely detect the negative focus in context. However, how to capture contextual information for negative focus detection is still an open challenge. To well address this, we come up with an attention-based neural network to model contextual information. In particular, we introduce a framework which consists of a Bidirectional Long Short-Term Memory (BiLSTM) neural network and a Conditional Random Fields (CRF) layer to effectively encode the order information and the long-range context dependency in a sentence. Moreover, we design two types of attention mechanisms, word-level contextual attention and topic-level contextual attention, to take advantage of contextual information across sentences from both the word perspective and the topic perspective, respectively. Experimental results on the SEM‘12 shared task corpus show that our approach achieves the best performance on negative focus detection, yielding an absolute improvement of 2.11% over the state-of-the-art. This demonstrates the great effectiveness of the two types of contextual attention mechanisms.</abstract>
<identifier type="citekey">shen-etal-2019-negative</identifier>
<identifier type="doi">10.18653/v1/D19-1230</identifier>
<location>
<url>https://aclanthology.org/D19-1230/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2251</start>
<end>2261</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Negative Focus Detection via Contextual Attention Mechanism
%A Shen, Longxiang
%A Zou, Bowei
%A Hong, Yu
%A Zhou, Guodong
%A Zhu, Qiaoming
%A Aw, AiTi
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F shen-etal-2019-negative
%X Negation is a universal but complicated linguistic phenomenon, which has received considerable attention from the NLP community over the last decade, since a negated statement often carries both an explicit negative focus and implicit positive meanings. For the sake of understanding a negated statement, it is critical to precisely detect the negative focus in context. However, how to capture contextual information for negative focus detection is still an open challenge. To well address this, we come up with an attention-based neural network to model contextual information. In particular, we introduce a framework which consists of a Bidirectional Long Short-Term Memory (BiLSTM) neural network and a Conditional Random Fields (CRF) layer to effectively encode the order information and the long-range context dependency in a sentence. Moreover, we design two types of attention mechanisms, word-level contextual attention and topic-level contextual attention, to take advantage of contextual information across sentences from both the word perspective and the topic perspective, respectively. Experimental results on the SEM‘12 shared task corpus show that our approach achieves the best performance on negative focus detection, yielding an absolute improvement of 2.11% over the state-of-the-art. This demonstrates the great effectiveness of the two types of contextual attention mechanisms.
%R 10.18653/v1/D19-1230
%U https://aclanthology.org/D19-1230/
%U https://doi.org/10.18653/v1/D19-1230
%P 2251-2261
Markdown (Informal)
[Negative Focus Detection via Contextual Attention Mechanism](https://aclanthology.org/D19-1230/) (Shen et al., EMNLP-IJCNLP 2019)
ACL
- Longxiang Shen, Bowei Zou, Yu Hong, Guodong Zhou, Qiaoming Zhu, and AiTi Aw. 2019. Negative Focus Detection via Contextual Attention Mechanism. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2251–2261, Hong Kong, China. Association for Computational Linguistics.