@inproceedings{mihaylov-frank-2019-discourse,
title = "Discourse-Aware Semantic Self-Attention for Narrative Reading Comprehension",
author = "Mihaylov, Todor and
Frank, Anette",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1257",
doi = "10.18653/v1/D19-1257",
pages = "2541--2552",
abstract = "In this work, we propose to use linguistic annotations as a basis for a Discourse-Aware Semantic Self-Attention encoder that we employ for reading comprehension on narrative texts. We extract relations between discourse units, events, and their arguments as well as coreferring mentions, using available annotation tools. Our empirical evaluation shows that the investigated structures improve the overall performance (up to +3.4 Rouge-L), especially intra-sentential and cross-sentential discourse relations, sentence-internal semantic role relations, and long-distance coreference relations. We show that dedicating self-attention heads to intra-sentential relations and relations connecting neighboring sentences is beneficial for finding answers to questions in longer contexts. Our findings encourage the use of discourse-semantic annotations to enhance the generalization capacity of self-attention models for reading comprehension.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mihaylov-frank-2019-discourse">
<titleInfo>
<title>Discourse-Aware Semantic Self-Attention for Narrative Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Todor</namePart>
<namePart type="family">Mihaylov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anette</namePart>
<namePart type="family">Frank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we propose to use linguistic annotations as a basis for a Discourse-Aware Semantic Self-Attention encoder that we employ for reading comprehension on narrative texts. We extract relations between discourse units, events, and their arguments as well as coreferring mentions, using available annotation tools. Our empirical evaluation shows that the investigated structures improve the overall performance (up to +3.4 Rouge-L), especially intra-sentential and cross-sentential discourse relations, sentence-internal semantic role relations, and long-distance coreference relations. We show that dedicating self-attention heads to intra-sentential relations and relations connecting neighboring sentences is beneficial for finding answers to questions in longer contexts. Our findings encourage the use of discourse-semantic annotations to enhance the generalization capacity of self-attention models for reading comprehension.</abstract>
<identifier type="citekey">mihaylov-frank-2019-discourse</identifier>
<identifier type="doi">10.18653/v1/D19-1257</identifier>
<location>
<url>https://aclanthology.org/D19-1257</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2541</start>
<end>2552</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discourse-Aware Semantic Self-Attention for Narrative Reading Comprehension
%A Mihaylov, Todor
%A Frank, Anette
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F mihaylov-frank-2019-discourse
%X In this work, we propose to use linguistic annotations as a basis for a Discourse-Aware Semantic Self-Attention encoder that we employ for reading comprehension on narrative texts. We extract relations between discourse units, events, and their arguments as well as coreferring mentions, using available annotation tools. Our empirical evaluation shows that the investigated structures improve the overall performance (up to +3.4 Rouge-L), especially intra-sentential and cross-sentential discourse relations, sentence-internal semantic role relations, and long-distance coreference relations. We show that dedicating self-attention heads to intra-sentential relations and relations connecting neighboring sentences is beneficial for finding answers to questions in longer contexts. Our findings encourage the use of discourse-semantic annotations to enhance the generalization capacity of self-attention models for reading comprehension.
%R 10.18653/v1/D19-1257
%U https://aclanthology.org/D19-1257
%U https://doi.org/10.18653/v1/D19-1257
%P 2541-2552
Markdown (Informal)
[Discourse-Aware Semantic Self-Attention for Narrative Reading Comprehension](https://aclanthology.org/D19-1257) (Mihaylov & Frank, EMNLP-IJCNLP 2019)
ACL