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Abstract

Entity alignment aims at integrating comple-
mentary knowledge graphs (KGs) from dif-
ferent sources or languages, which may ben-
efit many knowledge-driven applications. It
is challenging due to the heterogeneity of
KGs and limited seed alignments. In this
paper, we propose a semi-supervised en-
tity alignment method by joint Knowledge
Embedding model and Cross-Graph model
(KECG). It can make better use of seed align-
ments to propagate over the entire graphs with
KG-based constraints. Specifically, as for
the knowledge embedding model, we utilize
TransE to implicitly complete two KGs to-
wards consistency and learn relational con-
straints between entities. As for the cross-
graph model, we extend Graph Attention Net-
work (GAT) with projection constraint to ro-
bustly encode graphs, and two KGs share the
same GAT to transfer structural knowledge as
well as to ignore unimportant neighbors for
alignment via attention mechanism. Results
on publicly available datasets as well as fur-
ther analysis demonstrate the effectiveness of
KECG. Our codes can be found in https:
//github.com/THU-KEG/KECG.

1 Introduction

Recently, many Knowledge Graphs (KGs) (e.g.,
DBpedia (Lehmann et al., 2015), YAGO (Rebele
et al., 2016) and BabelNet (Navigli and Ponzetto,
2012)) have emerged to provide structural knowl-
edge for different applications. These separately
constructed KGs contain heterogeneous but com-
plementary contents; thus integrating KGs from
different sources or languages into a unified KG
becomes essential to better benefit knowledge-
driven applications, ranging from information ex-
traction (Han et al., 2018; Cao et al., 2018) to ques-
tion answering (Cui et al., 2017).
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Figure 1: Example of the New York City entity and its
neighbors in two heterogeneous KGs (Dashed circles
in the same color means prior alignments).

Some efforts have been made to integrate KGs
by aligning entities with their semantically same
counterparts, namely entity alignment. Early en-
tity alignment approaches either rely on human
efforts (Mahdisoltani et al., 2013) or extra re-
sources (Hu et al., 2011; Wang et al., 2013) to dis-
cover new equivalent entity pairs. Recent embed-
ding approaches show significant improvement on
entity alignment. We roughly classify these em-
bedding models into two groups: KG-based mod-
els and graph-based models. KG-based mod-
els (Hao et al., 2016; Chen et al., 2017; Sun et al.,
2017; Zhu et al., 2017; Sun et al., 2018; Chen
et al., 2018) utilize existing KG representation
learning methods to learn embeddings of entities
and relations in different KGs, and then align them
into a unified vector space. This type of method
can not only preserve KG structures, but also im-
plicitly complete KG with the missing links from
existing knowledge. However, KG-based meth-
ods require a sufficient number of seed alignments,
which is usually expensive to obtain.

To alleviate the burden of seed alignments,
graph-based methods (Wang et al., 2018) utilize
Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) to enhance entity embeddings with
their neighbors’ information, thus can make bet-
ter use of seed alignments to propagate them over

https://github.com/THU-KEG/KECG
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the entire graph. However, GCN-based models are
sensitive to structural differences of KGs (Vaswani
et al., 2017) and may not perform well for entity
alignment, since different KGs are very heteroge-
neous. Another issue of this type of method is
that they fail to consider relation types, which ac-
tually play an important role in entity alignment.
As shown in Figure 1, the New York City entity
has different surface forms in the two KGs (i.e.,
New York City in KG1 and New York in KG2).
There are two possible mappings from the New
York City and New York (state) in KG1 to the New
York in KG2, and the New York in KG2 shares
the same neighbors Hudson River and U.S. state
with New York City and New York (state) in KG1.
In this case, we need to further consider the re-
lation types: adjoin and hasRiver to distinguish
the two candidate alignments; otherwise, a graph-
based method may be misled here.

In this paper, we propose a semi-supervised
entity alignment method by joint Knowledge
Embedding model and Cross-Graph model
(KECG), which combines the above two types of
methods. The basic idea of KECG is to utilize a
cross-graph model to embed entities into a unified
vector space by using inner-graph structure and
inter-graph alignments information; meanwhile
the knowledge embedding model learns KG
representations to implicitly complete different
KGs towards consistency and model relational
constraints among entities. There are two key
points for high-quality jointly training. First, the
completion from KG learning may exacerbate
the heterogeneity between two KGs, because two
KGs may contain different rich parts, which shall
become richer during training. Second, different
from conventional KG representation learning,
entity alignment requires one-to-one mapping,
which implies that the similar entities sharing
common neighbors cannot be embeded closely,
otherwise they shall be aligned incorrectly as
shown in Figure 1.

Therefore, as for cross-graph model, we pro-
pose to utilize an extended Graph Attention Net-
work (GAT) (Vaswani et al., 2017) as our cross-
graph model that allows robustly encoding of
KGs. To alleviate the negative impacts of hetero-
geneity, we encode different KGs with the same
GAT, so that it not only highlights the entities that
are important for alignment in the graph, but also
transfers structural knowledge via shared parame-

ters. We also extend it with constraints on weight
matrices, making our model more efficient and ef-
fective. Moreover, we employ the nearest neigh-
bor sampling strategy to differentiate the entities
that are embeded closely but not the same to fur-
ther boost the performance. We summarize the
main contributions as follows:

1. We propose a novel semi-supervised KECG
model for entity alignment by joint knowl-
edge embedding model and cross-graph
model.

2. We utilize an extended GAT to alleviate the
negative impacts of heterogeneous KGs, and
employ the nearest neighbor sampling strat-
egy for KG representation learning towards
one-to-one mapping, making the combina-
tion more suitable for entity alignment.

3. We evaluate KECG on five publicly avail-
able datasets including three cross-lingual
datasets and two large-scale datasets from
different sources. Compared with four state-
of-the-art baselines, experimental results and
further analysis demonstrate the outperfor-
mance of KECG.

2 Background

2.1 Problem Formulation
Formally, we represent two heterogeneous KGs
as G1 = (E1, R1, T1) and G2 = (E2, R2, T2),
where Ei, Ri, Ti represent the sets of entity, re-
lation and triplet in Gi, i ∈ {1, 2}, respectively.
Ne = {e′|(e, r, e′) ∈ T} ∪ {e′|(e′, r, e) ∈ T}
is the set of neighbors of the entity e in G. S =
{(e1, e2) ∈ E1 × E2|e1 ↔ e2} is a set of labeled
entity pairs that are same in semantics, where an
equivalence relation ↔ holds between e1 and e2,
e.g., e1 in G1 describes the same real-world entity
with e2 inG2. Entity alignment aims to find the re-
maining semantically same entity pairs inE1×E2.
For convenience, we put G1 and G2 together into
one large graph G = G1 + G2, R = R1 ∪ R2,
T = T1 ∪ T2, and n = |E1| + |E2| is the total
number of entities. We use bold-face letters to de-
note the vector representations of the correspond-
ing terms throughout the paper.

2.2 Graph Neural Networks (GNNs)
GNNs are a type of neural network model that
directly deals with structured data (Bruna et al.,
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Figure 2: The overview framework of KECG. Solid lines (in Input) connect pre-aligned entities in two KGs. Nodes
in different sizes (in Knowledge Embedding Model) show the attention of the center nodes over their neighbors.
Circled nodes in the output are the potentially equivalent entities that we want to find out (in Output).

2014; Defferrard et al., 2016; Hamilton et al.,
2017). They take a graph as an input, output la-
bels for each node, and are similar to a propagation
model: to enhance the features of a node according
to its neighbor nodes. Among them, GCN (Kipf
and Welling, 2017) is a simplification of spectral
graph convolutions, whose formulation is as fol-
lows:

H(l+1) = σ(AH(l)W(l))

where A is a normalized adjacent matrix of the
input graph with self-connection, H(l) and W(l)

are the hidden states and weights in the lth layer,
and σ(·) is a non-linear activation, such as ReLu.
Subsequently, Vaswani et al. (2017) introduce at-
tention mechanism into GCN by dynamically cal-
culating A according to the attention values be-
tween each entity pairs, which is capable of min-
ing structural knowledge better.

3 Method

To combine KG-based methods and graph-based
methods with consideration of seed limit and
KG heterogeneity, we propose a novel semi-
supervised method KECG for entity alignment.
As shown in Figure 2, KECG consists of two
parts: cross-graph model and knowledge embed-
ding model. The input of KECG includes a com-
position G of two KGs and their prior alignment
set S.

3.1 Cross-graph Model

The goal of our cross-graph model is to uti-
lize structural information, including inner-graph

structure and inter-graph alignments, to embed en-
tities into a unified vector space. Due to the in-
completeness of KGs, there may be some enti-
ties and relations existing in one KG but miss-
ing in another KG. We utilize an extended GAT
with projection constraint as an encoder to em-
bed the KGs while paying different attention over
their neighbors, therefore it is able to alleviate the
negative impact of heterogeneity by ignoring some
unimportant neighbors for alignment. Besides, the
graph convolution operation allows us to lever-
age both the labeled entities and the abundant un-
labeled entity information for alignment, making
our method naturally semi-supervised.

The input of the encoder includes an entity em-
bedding matrix X ∈ Rn×d and neighbor sets of all
entities as KG structure, where d is the dimension
of entities. The KG encoder is built by stacking
multiple GAT layers:

H(l+1) = σ(A(l)H(l)W(l)) (1)

where H(l) ∈ Rn×d(l) and W(l) ∈ Rd(l)×d(l+1)

are the hidden states and weights in the lth layer,
H(0) = X, σ(·) is a non-linear activation chosen
as ReLU(·) = max(0, ·), and A(l) ∈ Rn×n is
a connectivity matrix computed by self-attention
over the input graph. Considering a single element
a
(l)
ij of A(l), the weight from entity ei to entity ej ,

we compute it using self-attention mechanism:

a
(l)
ij = softmax(c

(l)
ij ) =

exp(c
(l)
ij )∑

ek∈Nei∪{ei}
exp(c

(l)
ik )

(2)
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, where Nei ∪ {ei} is the neighbor set of ei with
self-loop, c(l)ij is the attention coefficient of entity
ei to entity ej . Following Velickovic et al. (2018),
the attention coefficient c(l)ij is computed as fol-
lows:

c
(l)
ij = LeakyReLU(qT [W(l)h

(l)
i ⊕W(l)h

(l)
j ]) (3)

where h
(l)
i ,h

(l)
j ∈ H(l) are the hidden states of

ei and ej , respectively, LeakyReLU (Maas et al.,
2013) is a nonlinear function, q ∈ R2d(l) is a learn-
able parameter, ·T represents transposition and ⊕
indicates vector concatenation. Let L be the num-
ber of layers. After L iterations of convolution,
the hidden state H(L) integrates both features of
entities and their neighbors, the ith row of which
represents the attention enhanced embedding of
entity ei.
Projection Constraint. Note that in every for-
ward propagation, we use W(l) to transform from
d(l) dimension vector space to d(l+1) dimension.
Motivated by (Yang et al., 2015), we keep the di-
mensions of the layers and embeddings to be the
same, and restrict the projection matrix W to be
a diagonal matrix. Such constraint can reduce the
number of parameters and computations, increase
the generalizability of the model. That’s why we
claim that we extend the normal GAT.
Objective OC . For semi-supervised entity align-
ment, we then minimize the representation dis-
tance of equivalent entities over all labeled align-
ments similar to (Wang et al., 2018):

OC =
∑

(ei,ej)∈S

∑
(e

′
i,e

′
j)∈S

′

[dist(ei, ej) + γ1 − dist(e
′
i, e

′
j)]+

(4)
where dist(ei, ej) = ||ei−ej ||2 is the L2 distance
between the aligned entity pair (ei, ej), represen-
tations of ei and ej are from the attention enhanced
embedding matrix H(L), S′ represents the nega-
tive pair set of S generated by nearest neighbor
sampling (Kotnis and Nastase, 2017), and γ1 > 0
is a margin hyper-parameter. Because an entity
can only have one corresponding entity in another
KG, the entity closest to the corresponding entity
in the same KG should be the best choice as a neg-
ative example to accurately discriminate the target
entity. More formally, given a pre-aligned entity
pair (ei, ej) ∈ S, where ei ∈ E1, ej ∈ E2, K2

is the number of negative samples, we choose K2

entities that are nearest to ej in E2 as the negative
samples of ei, and vice versa for ej . After that,

each pre-aligned entity pair will have 2*K2 neg-
ative samples. We utilize the L2 distance as the
measure to search for the nearest negative samples
due to its superior performance in experiments.

3.2 Knowledge Embedding Model

The goal of our knowledge embedding model is to
model inner-graph relationships, making entities
more distinguishable. Here, we use TransE (Bor-
des et al., 2013), which is one of the most repre-
sentative translation-based methods, as our knowl-
edge embedding model. It is worth mentioning
that other advanced KG learning methods can also
be applied to our knowledge embedding model
such as TransD (Ji et al., 2015), which is left for
future work as our main idea is to joint cross-graph
embeddings and knowledge embeddings for entity
alignment.
Objective OK . Formally, given a relational triplet
(eh, r, et), TransE wants eh+r ' et. So it defines
the score function f(eh, r, et) = ||eh+r−et||2 to
measure the plausibility of (eh, r, et), where || · ||2
means 2-norm. Following TransE, we utilize a
margin-based ranking loss function as the training
objective of the knowledge embedding model, de-
fined as:

OK =
∑

(eh,r,et)∈T

∑
(e′

h
,r′,e′t)∈T ′

[f(eh, r, et) + γ2

−f(e′h, r′, e′t)]+
(5)

where [·]+ = max{0, ·} represents the maximum
between 0 and the input, embeddings of entities eh
and et are from the attention enhanced embedding
matrix H(L), relation r is from the relation matrix
R ∈ R|R|×d which needs to be learned, T ′ stands
for the negative sample triplet set of T , and γ2 > 0
is a margin hyper-parameter separating positive
and negative triplets. T ′ is generated by corrupting
T . For a triplet (eh, r, et) ∈ T , we replace eh to
generate a negative triplet (e′h, r, et), where e′h also
has the same relation type r connect to other enti-
ties, and so does et. K1 is the number of negative
samples for each positive triplet. For example, we
think Beijing City can be a replacer for New York
City in (New York City, country, United States),
since Beijing City also has the relation country but
connected with a different tail entity China. If the
number of replacers is less than K1, we randomly
sample replacers from all entities as what the uni-
form negative sampling method does.
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3.3 Optimization and Inference

Overall Objective O. Here, we define the objec-
tive function of KECG corresponding to the above
two parts:

O = OC +OK (6)

where OC and OK denote the objective function
of the cross-graph model and the knowledge em-
bedding model, respectively. It is worth noting
that we can set different weights for OC and OK .
But in order to treat both kinds of models equally,
here, we set the same weight for them in exper-
iments. We use AdaGrad (Duchi et al., 2011) to
optimize the overall objective O.
Inference. When inferring, new equivalent enti-
ties are discovered based on the L2 distances be-
tween entities in the joint embeddings. Equivalent
entities should become close with each other, so
do equivalent relation types, e.g., circled nodes, r1
and r4 in the output of Figure 2.

4 Experiments

We evaluate KECG on entity alignment with five
publicly available datasets including three cross-
lingual datasets and two large-scale datasets from
different sources. We compare KECG with four
state-of-the-art baselines and conduct further anal-
ysis of essential components of KECG.

4.1 Datasets

Following (Sun et al., 2017, 2018; Wang
et al., 2018), we use the DBP15K and the
DWY100K datasets for evaluation. DBP15K
contains three cross-lingual datasets built from
DBpedia, denoted by DBP15KZH−EN(Chinese to
English), DBP15KJA−EN(Japanese to English)
and DBP15KFR−EN(French to English). Each
dataset contains 15,000 reference entity align-
ments. To test the adaptability of KECG to
large-scale data, we evaluate on DWY100K.
DWY100K contains two large-scale datasets ex-
tracted from DBpedia, Wikidata and YAGO3,
denoted by DWY100KWD(DBpedia to Wikidata)
and DWY100KYG(DBpedia to YAGO3). Each
dataset has 100,000 reference entity alignments.
The detailed information of each dataset is listed
in Table 1.

4.2 Experiment Settings

To investigate the ability of KECG, we compare
it with the following state-of-the-art entity align-

Datasets Entities Relations Rel. triplets

DBP15KZH−EN

Chinese 66,469 2,830 153,929
English 98,125 2,317 237,674

DBP15KJA−EN

Japanese 65,744 2,043 164,373
English 95,680 2,096 233,319

DBP15KFR−EN

French 66,858 1,379 192,191
English 105,889 2,209 278,590

DWY100KWD

DBpedia 100,000 330 463,294
Wikidata 100,000 220 448,774

DWY100KYG

DBpedia 100,000 302 428,952
YAGO3 100,000 31 502,563

Table 1: Statistics of DBP15K and DWY100K.

ment methods including three KG-based models
and one graph-based model.

• KG-based models: MTransE (Chen et al.,
2017) is the basic KG-based method.
JAPE (Sun et al., 2018) combines relation
and attribute embeddings for entity align-
ment. AlignEA is the non-iterative version
of BootEA (Sun et al., 2018) for entity align-
ment, which gets the best results.

• Graph-based model: GCN-Align (Wang
et al., 2018) aligns cross-lingual entity via
GCN.

More specifically, we use a 3-layer extended
GAT as the encoder to process the composite KG
G to generate embeddings of its entities. We set
the dimension of all layers to be the same d. The
entity embedding matrix X and the relation ma-
trix R are initialized randomly and updated during
training. Besides, we separated two variants from
KECG for ablation study, called KECG(w/o NNS)
and KECG(w/o K).

• KECG(w/o NNS) replaces the nearest neigh-
bor sampling (NNS) strategy with normal
uniform negative sampling.

• KECG(w/o K) simply removes the knowl-
edge embedding model, only considering the
equivalent relation as what GCN-Align does.

For all the compared approaches, we randomly
split 30% of the reference entity alignments as
prior alignments (i.e., training data) and leave the
remaining as testing data. We use two evaluation
metrics in this task: (1) the mean reciprocal rank
of all correct entities (MRR) and (2) the propor-
tion of correct entities that rank no larger than N
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Methods
DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN DWY100KWD DWY100KYG

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 30.83 61.41 0.364 27.86 57.45 0.349 24.41 55.55 0.335 28.12 51.95 0.363 25.15 49.29 0.334
JAPE 41.18 74.46 0.490 36.25 68.50 0.476 32.39 66.68 0.430 31.84 58.88 0.411 23.57 48.41 0.320

AlignEA 47.18 79.19 0.581 44.76 78.89 0.563 48.12 82.43 0.599 56.55 82.70 0.655 63.29 84.76 0.707
GCN-Align 41.25 74.38 0.549∗ 39.91 74.46 0.546∗ 37.29 74.49 0.532∗ 50.60∗ 77.21∗ 0.600∗ 59.72∗ 83.80∗ 0.682∗

KECG(w/o NNS) 41.10 77.67 0.549 41.05 77.55 0.550 39.30 77.17 0.547 46.95 76.29 0.571 57.10 80.58 0.653
KECG(w/o K) 43.04 79.12 0.551 44.61 80.70 0.567 43.22 81.45 0.559 59.77 87.99 0.695 73.83 93.04 0.806

KECG 47.77 83.50 0.598 48.97 84.40 0.610 48.64 85.06 0.610 63.23 89.97 0.726 72.76 91.51 0.795
“*” denotes the unreported metrics in their papers. We reproduced the results using their source code.

Table 2: Results comparison on entity alignment(Results of Hits@1 and Hits@10 are percentage values).

(Hits@N). Higher values of MRR and Hits@N in-
dicate a better entity alignment model.

For parameter settings, the dimension of the
hidden units in each GAT layer is set to be the
same d = 128 as the entity and relation em-
beddings. Learning rate λ for AdaGrad is cho-
sen among {0.001, 0.005, 0.01, 0.05, 0.1}. Mar-
gin γ1 and γ2 are chosen among {1.0, 2.0, 3.0}.
The number of negative samples for cross-graph
model and knowledge model are K1 = 25 and
K2 = 2, respectively, and the negative samples
will be updated every 10 epochs. The total number
of training rounds is 1000. The optimal configura-
tion of our models for the entity alignment task is:
λ = 0.005, γ1 = 3.0, γ2 = 3.0.

4.3 Results

Table 2 lists the results of entity alignment on
DBP15K and DWY100K. In general, KECG is
significantly more effective than MTransE, JAPE,
and GCN-Align on all datasets, and slightly
outperform AlignEA on small-scale datasets but
greatly on large-scale datasets. Among all the
baselines, AlignEA is the strongest one, which
results from it using two margins to control the
scores of triplets, making the KG structure mod-
eling based on triplets more accurate than others.
We conclude the detailed results in three aspects:

• For different model groups. Compared
with the KG-based models, KECG performs
much better than MTransE and JAPE. On
DBP15KZH−EN, KECG and AlignEA get
very close results regarding Hits@1 with a
gap of 0.59%, but as for Hits@10 and MRR,
the differences become 4.31% and 0.017,
respectively. The reason is that, though
some entities are not accurately aligned, their
neighbors, or neighbors of neighbors, may
already be aligned. And KECG propagates
these features to unaligned entities, making

the positions of the unaligned entities in the
vector space very close to the correspond-
ing entities. It reflects the importance of the
global structural information of KGs. Com-
pared with the graph-based model, KECG
significantly outperforms GCN-Align regard-
ing all metrics. It shows that involving
the local relationships between entities can
make entities more distinguishable, making
the alignment more accurate.

• For different data scales. It can be seen
that KECG has good adaptability on differ-
ent data scales. The average gains of KECG
regarding Hits@1 are 8%-41.3% on large-
scale datasets and 1.7%-20.7% on small-
scale datasets. With large-scale KGs provid-
ing richer relational and structural informa-
tion, KECG can encode entities with more
semantics. However, we found that, on
DWY100KYG, KECG’s variant KECG(w/o
K) works better than itself. This will be fur-
ther discussed in Section 4.4.

• For different language pairs. KECG per-
forms best on all language pairs. It improves
the MRR score to 0.61 on DBP15KJA−EN ,
which is a nearly 8% improvement compared
with the best baseline. To the best of our
knowledge, the imbalanced resources of non-
English KGs with English KG result in the
heterogeneity of cross-lingual KGs, making
it challenging to align them. KG-based mod-
els, such as MTransE, cannot learn good rep-
resentations to model the structures of non-
English KGs, as restraints for entities are rel-
atively insufficient. Methods based on GCNs,
such as GCN-Align, are sensitive to struc-
tural differences, and find it hard to narrow
the differences for alignment. KECG makes
use of the extended GAT to alleviate the neg-
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ative impacts of heterogeneous KGs, which
successfully highlights the entities that are
important for alignment in the graph. Be-
cause English and French share many simi-
larities, both KECG and baselines get satis-
factory results on DBP15KFR−EN.

4.4 Analysis
4.4.1 Effectiveness of Knowledge Embedding

Model
For better comparison, we draw two detailed
Hits@N bar plots of GCN-Align, AlignEA,
KECG(w/o K) and KECG on DBP15KZH−EN and
DWY100KYG, as shown in Figure 3. In Fig-
ure 3(a), KECG(w/o K) gets better results than
GCN-Align, which reflects the power of the graph
attention mechanism. However, KECG(w/o K)
cannot exceed AlignEA, showing that only con-
sidering structural information is not enough for
entity alignment. After adding the knowledge
embedding model, KECG achieves the highest
Hits@{1,10,50}. The effectiveness of knowledge
embedding model lies in two parts. Firstly, it ap-
plies constraints to entities by involving represen-
tation of relation types. Entity alignment leads
to some relationship alignment, and entities hav-
ing similar relations become close. Secondly, the
knowledge embedding model is beneficial for the
graph attention mechanism to learn better atten-
tion values.

In Figure 3(b), KECG still outperforms GCN-
Align and AlignEA, but KECG(w/o K) exceeds
KECG regarding three metrics, which reflects the
weakness of the current knowledge embedding
model. According to our statistics, the 1-to-N,
N-to-1, and N-to-N relations account for 79.58%
of the total in DWY100KYG, while 60.05% in
DBP15KZH−EN. The introduced knowledge em-
bedding model is based on TransE, lacking the
ability of modeling complex relationships (e.g., 1-
to-N, N-to-1, and N-to-N relations). When there
are too many complex relationships in the datasets,
it brings more decrement rather than improvement
to the results. To ease this situation, we can use
a stronger representation model for complex rela-
tionships, such as TransR (Lin et al., 2015). We
leave this for future work.

4.4.2 Effectiveness of Nearest Neighbor
Sampling

In Table 2, it can be seen that KECG(w/o NNS)
outperforms many baselines and its Hits@1 on

Hits@1 Hits@10 Hits@50
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100
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H
its
@
N
(%
)
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Figure 3: Detailed Hits@N for investigating the effec-
tiveness of Knowledge Embedding Model.

DBP15KFR−EN reaches 39.30%, which is higher
than another graph-based method GCN-Align by
2.01%. But the Hits@1 of KECG(w/o NNS) is
lower than GCN-Align’s by approximately 3% on
DWY100K. It is because DWY100K has a larger
number of triplets, while the number of relations
is relatively small. Involving the representation
of complex relationships will introduce noise and
affect the performance of the cross-graph model.
After employing the nearest neighbor sampling
strategy in cross-graph model, KECG consider-
ably improves the results of KECG(w/o NNS),
e.g., Hits@1 on DWY100KWD is raised from
46.95% to 63.23%. The excellent performance of
nearest neighbor sampling owing to its accurately
discriminating the target entity from other close
entities, especially on large-scale datasets.

4.4.3 Sensitivity to Proportion of Prior
Alignment

To investigate whether KECG is sensitive to the
proportion of pre-aligned entities, we vary the pro-
portion from 10% to 50% with step 10% for train-
ing, and use the rest of pre-aligned entities for test-
ing. Intuitively, more pre-aligned entities should
provide more information to discover the potential
pairs of equivalent entities.

Figure 4 illustrates the changes in Hits@1 and
Hits@10 of KECG, AlignEA and GCN-Align on
all datasets. As expected, the results of all meth-
ods become better with the increase in proportion.
Given half of the prior alignment like 50%, all
three methods get close and satisfactory Hits@1.
When given a very small proportion of prior align-
ment like 10%, the results of AlignEA and GCN-
Align decrease enormously, but our KECG still
achieves outstanding results. Therefore, KECG
works well on entity alignment even with a lim-
ited number of prior alignment.
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Figure 4: Hits@N of KECG, AlignEA and GCN-Align on entity alignment w.r.t. proportion of prior align-
ment.(The x-axis represents the proportion of prior alignment.)

5 Related Work

5.1 KG Embedding

Various KG embedding methods have shown ef-
fectiveness in modeling the semantic information
of KGs. TransE (Bordes et al., 2013) is a mile-
stone in learning embeddings for KGs, which in-
terprets a relation as the translation from its head
entity to its tail entity. Then it motivated several
enhanced methods like TransR (Lin et al., 2015).
In addition to them, non-translational methods
also achieve satisfactory performances, such as
RESCAL (Nickel et al., 2011), ConvE (Dettmers
et al., 2018) and RotatE (Sun et al., 2019). Mean-
while, external information in KGs is fused to im-
prove embedding (Wang and Li, 2016). More de-
tailed KG embedding methods are summarized in
(Wang et al., 2017).

5.2 Entity Alignment

Early human efforts, such as crowdsourcing and
hand-crafted features (Lehmann et al., 2015;
Mahdisoltani et al., 2013), are utilized to address
the entity alignment problem. Though reaching
high precisions, they are usually time-consuming
and costly. Many automated approaches lever-
age the extra resources, such as OWL properties
and Wikipedia links (Hu et al., 2011; Wang et al.,
2013) to align entities, but such extra information
is not generally available for all KGs.

Recently, KG embedding-based approaches be-
come the most popular solution for entity align-
ment. JE (Hao et al., 2016) is an early work to
jointly embed different KGs into a uniform vec-
tor space to align entities in KGs. MTransE (Chen
et al., 2017) learns transitions to translate each en-
tity embedding vector to its counterparts in an-
other space. JAPE (Sun et al., 2017) jointly trains
the attribute embedding and structure embedding
by a skip-gram model and a translational model,

respectively, to align entities. GCN-Align (Wang
et al., 2018) is a new graph-based model aligning
KGs via GCN. It takes advantage of GCN to prop-
agate information from neighbors, and align entity
embeddings enhanced by structural knowledge.
However, GCN-Align only considers the equiv-
alent relations between entities in model train-
ing, neglecting the use of abundant relationships
in KGs to precisely distinguish entities with sim-
ilar neighbors. At the same time, iterative align-
ment becomes a new fashion to improve the results
of entity alignment. IPTransE (Zhu et al., 2017)
and BootEA (Sun et al., 2018) integrate knowl-
edge among different KGs by enlarging the train-
ing data (prior alignments) in a bootstrapping way.
KDCoE (Chen et al., 2018) iteratively co-trains
multilingual KG embeddings and fuses them with
entity description information for alignment. The
aforementioned iterative methods improve the re-
sults mainly by increasing the number of pre-align
entity pairs while training, and such a strategy can
be a general enhancement for most alignment ap-
proaches (Sun et al., 2018). A better non-iterative
method should achieve better results through boot-
strap. Therefore, we are more concerned with the
best result that a non-iterative method can achieve.

6 Conclusions

In this paper, we propose a semi-supervised en-
tity alignment method KECG that combines the
knowledge embedding model and graph-based
model. We utilize an extended GAT to encode het-
erogeneous KGs and perform entity alignment by
propagating alignment information over the entire
graphs. Meanwhile, the KG learning is involved
to model different relation types, making entities
more distinguishable. Experimental results show
that KECG significantly outperforms four state-of-
the-art baselines.

For future work, we will extend the knowledge
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embedding model of KECG to other KG represen-
tation learning methods, such as TransD (Ji et al.,
2015), to gain a stronger ability of modeling rela-
tionships. Besides, iteratively discovering new en-
tity alignments based on the framework of KECG
is another interesting direction.
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