@inproceedings{min-etal-2019-discrete,
title = "A Discrete Hard {EM} Approach for Weakly Supervised Question Answering",
author = "Min, Sewon and
Chen, Danqi and
Hajishirzi, Hannaneh and
Zettlemoyer, Luke",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1284/",
doi = "10.18653/v1/D19-1284",
pages = "2851--2864",
abstract = "Many question answering (QA) tasks only provide weak supervision for how the answer should be computed. For example, TriviaQA answers are entities that can be mentioned multiple times in supporting documents, while DROP answers can be computed by deriving many different equations from numbers in the reference text. In this paper, we show it is possible to convert such tasks into discrete latent variable learning problems with a precomputed, task-specific set of possible solutions (e.g. different mentions or equations) that contains one correct option. We then develop a hard EM learning scheme that computes gradients relative to the most likely solution at each update. Despite its simplicity, we show that this approach significantly outperforms previous methods on six QA tasks, including absolute gains of 2{--}10{\%}, and achieves the state-of-the-art on five of them. Using hard updates instead of maximizing marginal likelihood is key to these results as it encourages the model to find the one correct answer, which we show through detailed qualitative analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="min-etal-2019-discrete">
<titleInfo>
<title>A Discrete Hard EM Approach for Weakly Supervised Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sewon</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danqi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannaneh</namePart>
<namePart type="family">Hajishirzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many question answering (QA) tasks only provide weak supervision for how the answer should be computed. For example, TriviaQA answers are entities that can be mentioned multiple times in supporting documents, while DROP answers can be computed by deriving many different equations from numbers in the reference text. In this paper, we show it is possible to convert such tasks into discrete latent variable learning problems with a precomputed, task-specific set of possible solutions (e.g. different mentions or equations) that contains one correct option. We then develop a hard EM learning scheme that computes gradients relative to the most likely solution at each update. Despite its simplicity, we show that this approach significantly outperforms previous methods on six QA tasks, including absolute gains of 2–10%, and achieves the state-of-the-art on five of them. Using hard updates instead of maximizing marginal likelihood is key to these results as it encourages the model to find the one correct answer, which we show through detailed qualitative analysis.</abstract>
<identifier type="citekey">min-etal-2019-discrete</identifier>
<identifier type="doi">10.18653/v1/D19-1284</identifier>
<location>
<url>https://aclanthology.org/D19-1284/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>2851</start>
<end>2864</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Discrete Hard EM Approach for Weakly Supervised Question Answering
%A Min, Sewon
%A Chen, Danqi
%A Hajishirzi, Hannaneh
%A Zettlemoyer, Luke
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F min-etal-2019-discrete
%X Many question answering (QA) tasks only provide weak supervision for how the answer should be computed. For example, TriviaQA answers are entities that can be mentioned multiple times in supporting documents, while DROP answers can be computed by deriving many different equations from numbers in the reference text. In this paper, we show it is possible to convert such tasks into discrete latent variable learning problems with a precomputed, task-specific set of possible solutions (e.g. different mentions or equations) that contains one correct option. We then develop a hard EM learning scheme that computes gradients relative to the most likely solution at each update. Despite its simplicity, we show that this approach significantly outperforms previous methods on six QA tasks, including absolute gains of 2–10%, and achieves the state-of-the-art on five of them. Using hard updates instead of maximizing marginal likelihood is key to these results as it encourages the model to find the one correct answer, which we show through detailed qualitative analysis.
%R 10.18653/v1/D19-1284
%U https://aclanthology.org/D19-1284/
%U https://doi.org/10.18653/v1/D19-1284
%P 2851-2864
Markdown (Informal)
[A Discrete Hard EM Approach for Weakly Supervised Question Answering](https://aclanthology.org/D19-1284/) (Min et al., EMNLP-IJCNLP 2019)
ACL
- Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2019. A Discrete Hard EM Approach for Weakly Supervised Question Answering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2851–2864, Hong Kong, China. Association for Computational Linguistics.