@inproceedings{ive-etal-2019-deep,
title = "Deep Copycat Networks for Text-to-Text Generation",
author = "Ive, Julia and
Madhyastha, Pranava and
Specia, Lucia",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1318/",
doi = "10.18653/v1/D19-1318",
pages = "3227--3236",
abstract = "Most text-to-text generation tasks, for example text summarisation and text simplification, require copying words from the input to the output. We introduce Copycat, a transformer-based pointer network for such tasks which obtains competitive results in abstractive text summarisation and generates more abstractive summaries. We propose a further extension of this architecture for automatic post-editing, where generation is conditioned over two inputs (source language and machine translation), and the model is capable of deciding where to copy information from. This approach achieves competitive performance when compared to state-of-the-art automated post-editing systems. More importantly, we show that it addresses a well-known limitation of automatic post-editing - overcorrecting translations - and that our novel mechanism for copying source language words improves the results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ive-etal-2019-deep">
<titleInfo>
<title>Deep Copycat Networks for Text-to-Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Ive</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pranava</namePart>
<namePart type="family">Madhyastha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most text-to-text generation tasks, for example text summarisation and text simplification, require copying words from the input to the output. We introduce Copycat, a transformer-based pointer network for such tasks which obtains competitive results in abstractive text summarisation and generates more abstractive summaries. We propose a further extension of this architecture for automatic post-editing, where generation is conditioned over two inputs (source language and machine translation), and the model is capable of deciding where to copy information from. This approach achieves competitive performance when compared to state-of-the-art automated post-editing systems. More importantly, we show that it addresses a well-known limitation of automatic post-editing - overcorrecting translations - and that our novel mechanism for copying source language words improves the results.</abstract>
<identifier type="citekey">ive-etal-2019-deep</identifier>
<identifier type="doi">10.18653/v1/D19-1318</identifier>
<location>
<url>https://aclanthology.org/D19-1318/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3227</start>
<end>3236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Copycat Networks for Text-to-Text Generation
%A Ive, Julia
%A Madhyastha, Pranava
%A Specia, Lucia
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F ive-etal-2019-deep
%X Most text-to-text generation tasks, for example text summarisation and text simplification, require copying words from the input to the output. We introduce Copycat, a transformer-based pointer network for such tasks which obtains competitive results in abstractive text summarisation and generates more abstractive summaries. We propose a further extension of this architecture for automatic post-editing, where generation is conditioned over two inputs (source language and machine translation), and the model is capable of deciding where to copy information from. This approach achieves competitive performance when compared to state-of-the-art automated post-editing systems. More importantly, we show that it addresses a well-known limitation of automatic post-editing - overcorrecting translations - and that our novel mechanism for copying source language words improves the results.
%R 10.18653/v1/D19-1318
%U https://aclanthology.org/D19-1318/
%U https://doi.org/10.18653/v1/D19-1318
%P 3227-3236
Markdown (Informal)
[Deep Copycat Networks for Text-to-Text Generation](https://aclanthology.org/D19-1318/) (Ive et al., EMNLP-IJCNLP 2019)
ACL
- Julia Ive, Pranava Madhyastha, and Lucia Specia. 2019. Deep Copycat Networks for Text-to-Text Generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3227–3236, Hong Kong, China. Association for Computational Linguistics.