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nodes in the graph to predict the results. With our
design, text level graphs remove the burden of de-
pendency between a single input text and the entire
corpus, which support online test. Besides, it has
the benefit of consuming less memory by connect-
ing words in a small contextual window, because
it excludes a good many words that are far away
in the text and have little relation with the current
word and thus significantly reduces the number of
edges. The message passing mechanism makes
nodes in the graph perceive information around
them to get precise meaning in a specific context.

In our experiments, our method achieves state-
of-the-art results in several text classification
datasets and consumes significantly fewer mem-
ory resources compared with previous methods.

2 Method

In this section, we will introduce our method in de-
tail. First, we show how to build a text level graph
for a given text; all the parameters for the text
level graph are taken from some global-sharing
matrices. Then, we introduce the message passing
mechanism on these graphs to obtain information
from the context. Finally, we depict how to predict
the label for a given text based on the learned rep-
resentations. The overall architecture of our model
is shown in Figure 1.

2.1 Building Text Graph

We notate a text with l words as T =
{r1, ...ri, ..., rl}, where ri denotes the representa-
tion of the ith word. ri is a vector initialized by
d dimension word embedding and can be updated
by training. To build a graph for a given text, we
regard all the words that appeared in the text as
the nodes of the graph. Each edge starts from a
word in the text and ends with its adjacent words.
Concretely, the graph of text T is defined as:

N = {ri|i ∈ [1, l]}, (1)

E = {eij |i ∈ [1, l]; j[i− p, i+ p]}, (2)

where N and E are the node set and edge set of
the graph, and word representations inN and edge
weights in E are taken from global shared matri-
ces. p denotes the number of adjacent words con-
nected to each word in the graph. Besides, we uni-
formly map the edges that occur less than k times
in the training set to a “public” edge to make pa-
rameters adequately trained.
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Figure 1: Structure of graph for a single text “he is
very proud of you.”. For the convenience of display, in
this figure, we set p = 2 for the node “very” (nodes
and edges are colored in red) and p = 1 for the other
nodes(colored in blued). In actual situations, the value
of p during a session is unique. All the parameters in
the graph come from the global shared representation
matrix, which is shown at the bottom of the figure.

Compared with the previous methods in build-
ing graph, our approach can exceedingly reduce
the scale of the graph in terms of nodes and edges.
That means that the text-level graph can consume
much less GPU memory. Besides, their method
is unfriendly to new-coming text, while our ap-
proach can solve this problem because the graph
for each text is only dependent on its content.

2.2 Message Passing Mechanism
Convolution can extract information from local
features (LeCun et al., 1989). In the graph do-
main, convolution is implemented by spectral ap-
proaches (Bruna et al., 2014; Henaff et al., 2015),
or non-spectral approaches (Duvenaud et al.,
2015). In this paper, a non-spectral method named
message passing mechanism (MPM) (Gilmer
et al., 2017) is employed for convolution. MPM
first collects information from adjacent nodes and
updates its representations based on its original
representations and collected information, which
is defined as:

Mn = max
a∈N p

n

eanra, (3)

r′n = (1− ηn)Mn + ηnrn (4)

where Mn ∈ Rd is the messages that node n re-
ceives from its neighbors; max is a reduction func-
tion which combines the maximum values on each
dimension to form a new vector as an output. N p

n

denotes nodes that represent the nearest pwords of
n in the original text; ean ∈ R1 is the edge weight
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from node a to node n, and it can be updated dur-
ing training; and rn ∈ Rd denotes the former rep-
resentation of node n. ηn ∈ R1 is a trainable vari-
able for node n that indicates how much informa-
tion of rn should be kept. r′n denotes the updated
representation of node n.

MPM makes the representations of nodes influ-
enced by neighborhoods, which means the repre-
sentations can bring the information from context.
Therefore, even for polysemous words, the precise
meaning in the context can be determined by the
influence of weighted information from neighbors.
Besides, the parameters of text level graphs are
taken from global shared matrices, which means
the representations can also bring global informa-
tion as other graph-based models do.

Finally, the representations of all nodes in the
text are used to predict the label of the text:

yi = softmax(Relu(W
∑
n∈Ni

r′n + b)) (5)

where W ∈ Rd×c is a matrix mapping the vector
into an output space, Ni is the node set of text i
and b ∈ Rc is bias.

The goal of training is to minimize the cross-
entropy loss between ground truth label and pre-
dicted label:

loss = −gi log yi, (6)

where gi is the “one-hot vector” of ground truth
label.

3 Experiments

In this section, we describe our experimental setup
and report our experimental results.

3.1 Experimental Setup
For experiments, we utilize datasets including R8,
R521, and Ohsumed2. R8 and R52 are both the
subsets of Reuters 21578 datasets. Ohsumed cor-
pus is extracted from MEDLINE database. MED-
LINE is designed for multi-label classification, we
remove the text with two or more labels. For all
the datasets above, we randomly select 10% text
from the training set to build validation set. The
overview of datasets is listed in Table 1.

We compare our method with the following
baseline models. It is noted that the results of some
models are directly taken from (Yao et al., 2019).

1https://www.cs.umb.edu/˜smimarog/textmining/datasets/
2http://disi.unitn.it/moschitti/corpora.htm

Datasets # Train # Test Categories Avg. Length

R8 5485 2189 8 65.72
R52 6532 2568 52 69.82

Ohsumed 3357 4043 23 135.82

Table 1: Datasets overview.

• CNN Proposed by (Kim, 2014), perform con-
volution and max pooling operation on word
embeddings to get representation of text.

• LSTM Defined in (Liu et al., 2016), use the
last hidden state as the representation of the
text. Bi-LSTM is a bi-directional LSTM.

• fastText Proposed by (Joulin et al., 2017),
average word or n-gram embeddings as doc-
uments embeddings.

• Graph-CNN Operate convolution over word
embedding similarity graphs by fourier filter,
proposed by (Defferrard et al., 2016).

• Text-GCN A graph based text classification
model proposed by (Yao et al., 2019), which
builds a single large graph for whole corpus.

3.2 Implementation Details

We set the dimension of node representation
as 300 and initialize with random vectors or
Glove (Pennington et al., 2014). k discussed in
Section 2.1 is set to 2. We use the Adam opti-
mizer (Kingma and Ba, 2014) with an initial learn-
ing rate of 10−3, and L2 weight decay is set to
10−4. Dropout with a keep probability of 0.5 is
applied after the dense layer. The batch size of our
model is 32. We stop training if the validation loss
does not decrease for 10 consecutive epochs.

For baseline models, we use default parameter
settings as in their original papers or implemen-
tations. For models using pre-trained word em-
beddings, we used 300-dimensional GloVe word
embeddings.

3.3 Experimental Results

Table 2 reports the results of our models against
other baseline methods. We can see that our model
can achieve the state-of-the-art result.

We note that the results of graph-based mod-
els are better than traditional models like CNN,
LSTM, and fastTest. That is likely due to the char-
acteristics of the graph structure. Graph structure
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Model R8 R52 Ohsumed

CNN 94.0 ± 0.5 85.3 ± 0.5 43.9 ± 1.0
LSTM 93.7 ± 0.8 85.6 ± 1.0 41.1 ± 1.0

Graph-CNN 97.0 ± 0.2 92.8 ± 0.2 63.9 ± 0.5
Text-GCN 97.1 ± 0.1 93.6 ± 0.2 68.4 ± 0.6

CNN* 95.7 ± 0.5 87.6 ± 0.5 58.4 ± 1.0
LSTM* 96.1 ± 0.2 90.5 ± 0.8 51.1 ± 1.5

Bi-LSTM* 96.3 ± 0.3 90.5 ± 0.9 49.3 ± 1.0
fastText* 96.1 ± 0.2 92.8 ± 0.1 57.7 ± 0.5

Text-GCN* 97.0 ± 0.1 93.7 ± 0.1 67.7 ± 0.3
Our Model* 97.8 ± 0.2 94.6 ± 0.3 69.4 ± 0.6

Table 2: Accuracy on several text classification
datasets. Model with ”*” means that all word vectors
are initialized by Glove word embeddings. We run all
models 10 times and report mean results.

allows a different number of neighbor nodes to ex-
ist, which enables word nodes to learn more accu-
rate representations through different collocations.
Besides, the relationship between words can be
recorded in the edge weights and shared globally.
These are all impossible for traditional models.

We also find that our model performs better
than graph-based models like Graph-CNN. Graph-
CNN represents documents using the bag-of-word
model, which is similar to ours, but they con-
nect word nodes within a large window with-
out weighted edges, which cannot distinguish the
importance between different words. While our
model employed trainable edge weights, which let
words express themselves differently when faced
with various collocation. Besides, the weights are
shared globally which means they can be trained
by all the text contains the same collocation in the
entire corpus.

We also note that our model performs bet-
ter than former state-of-the-art model Text-GCN.
That is likely due to more expressive edges,
which have been discussed before, and the dif-
ference of representations learning. Text-GCN
learns word representations by corpus level co-
occurrence while our model is trained within a
contextual window like traditional word embed-
dings. Therefore our model can benefit from pre-
trained word embeddings and achieve better re-
sults.

3.4 Analysis of Memory Consumption

Table 3 reports the comparison of memory con-
sumption and edges numbers between Text-GCN
and our model. Results show that our model has a
significant advantage in memory consumption.

Datasets Text-GCN Our Model

R8 9,979M(2,841,760) 954M(250,623)
R52 8,699M(3,574,162) 951M(316,669)

Ohsumed 13,510M(6,867,490) 1,167M(419,583)

Table 3: Comparison of memory consuming. The
number of edges in the whole model is in parentheses.
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Figure 2: Model performance using p from 1 to 19 and
“∞” (fully-connected). All hyperparameters are set the
same except p. The left and right ordinate indicate the
accuracy on the r8 and ohsumed dataset respectively.

As discussed in 2.1, the words in our model
are only connected to adjacent words in the texts,
while Text-GCN , which is based on the cor-
pus level graph, connects nodes within a reason-
ably large window. Because Text-GCN uses co-
occurrence information as fixed weights, it has to
enlarge the window size to get a more accurate
co-occurrence weight. Therefore, we will get a
much more sparse edge weights matrix than Text-
GCN. Also, since the representation of a text is
calculated by the sum of the representations of
word nodes in the text, there is no text node in our
model, which also reduces memory consumption.

3.5 Analysis of Edges

To understand the difference of various connect-
ing windows, we compared the performance of the
R8 and ohsumed datasets with different p values,
the result is reported in Figure 2. We find that
the accuracy increases as p becomes larger and
achieves the best performance when connected
with about 3 neighborhoods. Then the accuracy
decreases volatility as p increases. This suggests
that when connected only with the nearest neigh-
borhood, nodes cannot understand the dependen-
cies that span multiple words in the context, while
connected with neighborhoods far away (much
larger p), the graphs become more and more sim-
ilar with fully connected graphs which ignore the
local features. In addition, the fewer edges, the
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Setting R8 R52 Ohsumed

Original 97.8 ± 0.2 94.6 ± 0.3 69.4 ± 0.6
(1)Fixed PMI Edges W. 97.7 ± 0.2 94.0 ± 0.2 67.6 ± 0.5
(2)Mean Reduction 97.7 ± 0.1 94.5 ± 0.3 62.6 ± 0.2
(3)Random Word Emb. 97.4 ± 0.2 93.7 ± 0.2 67.3 ± 0.5

Table 4: Results of ablation studies. We run all models
for 5 times and give mean results.

fewer memory consumption. Our model has fewer
edges compared with previous methods, and this
also show the advantages of our proposed model.

3.6 Ablation Study

To further analyze our model, we perform ablation
studies and Table 4 shows the results.

In (1), we fix the weights of edges and initialize
them with point-wise mutual information (PMI),
and the size of sliding windows is set to 20, which
is the same as (Yao et al., 2019). Removing the
trainable edges makes the model perform worse on
all data sets, which demonstrates the effectiveness
of trainable edges. In our opinion, the main reason
is that trainable edges can better model the rela-
tions between words compared with fixed edges.

In (2), we change the max-reduction by mean-
reduction. In the original model, the node gets its
new representation from received messages by ob-
taining the maximum value alone each dimension.
From Table 4, we can see that the max reduc-
tion can achieve better results. The node reduc-
tion function is similar to the pooling operation
on CNN. Reduction by max highlights features
that are highly discriminating and provides non-
linearity, which helps to achieve better results.

In (3), we remove the pre-trained word em-
beddings from nodes and initialize all the nodes
with random vectors. Compared with the origi-
nal model, the performances are slightly decreased
without pre-trained word embeddings. Therefore,
we believe that the pre-trained word embeddings
have a particular effect on improving the perfor-
mance of our model.

4 Related Work

In this section, we will introduce the related works
about GNN and text classification in detail.

4.1 Graph Neural Networks

Graph Neural Networks (GNN) has got extensive
attention recently (Zhou et al., 2018; Zhang et al.,
2018b; Wu et al., 2019). GNN can model non-

Euclidean data, while traditional neural networks
can only model regular grid data. While many
tasks in reality such as knowledge graphs (Ham-
aguchi et al., 2017), social networks (Hamilton
et al., 2017) and many other research areas (Khalil
et al., 2017) are with data in the form of trees or
graphs. So GNN are proposed (Scarselli et al.,
2009) to apply deep learning techniques to data in
graph domain.

4.2 Text Classification

Text classification is a classic problem of nat-
ural language processing and has a wide range
of applications in reality. Traditional text clas-
sification like bag-of-words (Zhang et al., 2010),
n-gram (Wang and Manning, 2012) and Topic
Model (Wallach, 2006) mainly focus on feature
engineering and algorithms. With the develop-
ment of deep learning techniques, more and more
deep learning models are applied for text classifi-
cation. Kim (2014); Liu et al. (2016) applied CNN
and RNN into text classification and achieved re-
sults which are much better than traditional mod-
els.

With the development of GNN, some graph-
based classification models are gradually emerg-
ing (Hamilton et al., 2017; Veličković et al., 2017;
Peng et al., 2018). Yao et al. (2019) proposed
Text-GCN and achieved state-of-the-art results on
several mainstream datasets. However, Text-GCN
has the disadvantages of high memory consump-
tion and lack of support online training. The
model presents in this paper solves the mentioned
problems in Text-GCN and achieves better results.

5 Conclusion

In this paper, we proposed a new graph based text
classification model, which uses text level graphs
instead of a single graph for the whole corpus. Ex-
perimental results show that our model achieves
state-of-the-art performance and has a significant
advantage in memory consumption.
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Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In
Advances in neural information processing systems,
pages 3844–3852.

David K Duvenaud, Dougal Maclaurin, Jorge Ipar-
raguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. 2015. Convo-
lutional networks on graphs for learning molecular
fingerprints. In Advances in neural information pro-
cessing systems, pages 2224–2232.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural
message passing for quantum chemistry. In Pro-
ceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1263–1272.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo,
and Yuji Matsumoto. 2017. Knowledge transfer for
out-of-knowledge-base entities: A graph neural net-
work approach. arXiv preprint arXiv:1706.05674.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs.
In Advances in Neural Information Processing Sys-
tems, pages 1024–1034.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015.
Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Nitin Jindal and Bing Liu. 2007. Review spam detec-
tion. In Proceedings of the 16th international con-
ference on World Wide Web, pages 1189–1190.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilk-
ina, and Le Song. 2017. Learning combinatorial
optimization algorithms over graphs. In Advances
in Neural Information Processing Systems, pages
6348–6358.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yann LeCun, Bernhard Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne Hubbard,
and Lawrence D Jackel. 1989. Backpropagation ap-
plied to handwritten zip code recognition. Neural
computation, 1(4):541–551.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial In-
telligence, pages 2873–2879.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 World Wide Web Conference,
pages 1063–1072. International World Wide Web
Conferences Steering Committee.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.
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