@inproceedings{maru-etal-2019-syntagnet,
title = "{S}yntag{N}et: Challenging Supervised Word Sense Disambiguation with Lexical-Semantic Combinations",
author = "Maru, Marco and
Scozzafava, Federico and
Martelli, Federico and
Navigli, Roberto",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1359/",
doi = "10.18653/v1/D19-1359",
pages = "3534--3540",
abstract = "Current research in knowledge-based Word Sense Disambiguation (WSD) indicates that performances depend heavily on the Lexical Knowledge Base (LKB) employed. This paper introduces SyntagNet, a novel resource consisting of manually disambiguated lexical-semantic combinations. By capturing sense distinctions evoked by syntagmatic relations, SyntagNet enables knowledge-based WSD systems to establish a new state of the art which challenges the hitherto unrivaled performances attained by supervised approaches. To the best of our knowledge, SyntagNet is the first large-scale manually-curated resource of this kind made available to the community (at \url{http://syntagnet.org})."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maru-etal-2019-syntagnet">
<titleInfo>
<title>SyntagNet: Challenging Supervised Word Sense Disambiguation with Lexical-Semantic Combinations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Maru</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Scozzafava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Martelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Current research in knowledge-based Word Sense Disambiguation (WSD) indicates that performances depend heavily on the Lexical Knowledge Base (LKB) employed. This paper introduces SyntagNet, a novel resource consisting of manually disambiguated lexical-semantic combinations. By capturing sense distinctions evoked by syntagmatic relations, SyntagNet enables knowledge-based WSD systems to establish a new state of the art which challenges the hitherto unrivaled performances attained by supervised approaches. To the best of our knowledge, SyntagNet is the first large-scale manually-curated resource of this kind made available to the community (at http://syntagnet.org).</abstract>
<identifier type="citekey">maru-etal-2019-syntagnet</identifier>
<identifier type="doi">10.18653/v1/D19-1359</identifier>
<location>
<url>https://aclanthology.org/D19-1359/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3534</start>
<end>3540</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SyntagNet: Challenging Supervised Word Sense Disambiguation with Lexical-Semantic Combinations
%A Maru, Marco
%A Scozzafava, Federico
%A Martelli, Federico
%A Navigli, Roberto
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F maru-etal-2019-syntagnet
%X Current research in knowledge-based Word Sense Disambiguation (WSD) indicates that performances depend heavily on the Lexical Knowledge Base (LKB) employed. This paper introduces SyntagNet, a novel resource consisting of manually disambiguated lexical-semantic combinations. By capturing sense distinctions evoked by syntagmatic relations, SyntagNet enables knowledge-based WSD systems to establish a new state of the art which challenges the hitherto unrivaled performances attained by supervised approaches. To the best of our knowledge, SyntagNet is the first large-scale manually-curated resource of this kind made available to the community (at http://syntagnet.org).
%R 10.18653/v1/D19-1359
%U https://aclanthology.org/D19-1359/
%U https://doi.org/10.18653/v1/D19-1359
%P 3534-3540
Markdown (Informal)
[SyntagNet: Challenging Supervised Word Sense Disambiguation with Lexical-Semantic Combinations](https://aclanthology.org/D19-1359/) (Maru et al., EMNLP-IJCNLP 2019)
ACL