@inproceedings{taitelbaum-etal-2019-multi,
title = "A Multi-Pairwise Extension of {P}rocrustes Analysis for Multilingual Word Translation",
author = "Taitelbaum, Hagai and
Chechik, Gal and
Goldberger, Jacob",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1363/",
doi = "10.18653/v1/D19-1363",
pages = "3560--3565",
abstract = "In this paper we present a novel approach to simultaneously representing multiple languages in a common space. Procrustes Analysis (PA) is commonly used to find the optimal orthogonal word mapping in the bilingual case. The proposed Multi Pairwise Procrustes Analysis (MPPA) is a natural extension of the PA algorithm to multilingual word mapping. Unlike previous PA extensions that require a k-way dictionary, this approach requires only pairwise bilingual dictionaries that are much easier to construct."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="taitelbaum-etal-2019-multi">
<titleInfo>
<title>A Multi-Pairwise Extension of Procrustes Analysis for Multilingual Word Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hagai</namePart>
<namePart type="family">Taitelbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gal</namePart>
<namePart type="family">Chechik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Goldberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present a novel approach to simultaneously representing multiple languages in a common space. Procrustes Analysis (PA) is commonly used to find the optimal orthogonal word mapping in the bilingual case. The proposed Multi Pairwise Procrustes Analysis (MPPA) is a natural extension of the PA algorithm to multilingual word mapping. Unlike previous PA extensions that require a k-way dictionary, this approach requires only pairwise bilingual dictionaries that are much easier to construct.</abstract>
<identifier type="citekey">taitelbaum-etal-2019-multi</identifier>
<identifier type="doi">10.18653/v1/D19-1363</identifier>
<location>
<url>https://aclanthology.org/D19-1363/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>3560</start>
<end>3565</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multi-Pairwise Extension of Procrustes Analysis for Multilingual Word Translation
%A Taitelbaum, Hagai
%A Chechik, Gal
%A Goldberger, Jacob
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F taitelbaum-etal-2019-multi
%X In this paper we present a novel approach to simultaneously representing multiple languages in a common space. Procrustes Analysis (PA) is commonly used to find the optimal orthogonal word mapping in the bilingual case. The proposed Multi Pairwise Procrustes Analysis (MPPA) is a natural extension of the PA algorithm to multilingual word mapping. Unlike previous PA extensions that require a k-way dictionary, this approach requires only pairwise bilingual dictionaries that are much easier to construct.
%R 10.18653/v1/D19-1363
%U https://aclanthology.org/D19-1363/
%U https://doi.org/10.18653/v1/D19-1363
%P 3560-3565
Markdown (Informal)
[A Multi-Pairwise Extension of Procrustes Analysis for Multilingual Word Translation](https://aclanthology.org/D19-1363/) (Taitelbaum et al., EMNLP-IJCNLP 2019)
ACL